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Abstract—While the network quality research has been os-

cillating between user- and technology-driven viewpoints, the

evolution of a utility-centric perspective is still a good way

off. Today, not only insufficient data exists on network quality

market figures, but also on the user’s usage appreciation across

service types and test ranges. Filling those research gaps, the

present work presents a novel model, mainly constructed around

existing empirical Quality of Experience (QoE) materials, which

approximates both ISP and user utilities. A focus is set on the case

of controlled quality and service degradations that intelligently

adapt services upon resource shortages. In a case study, this model

is applied to the case of Video on Demand services.

Keywords—Quality of Experience; Willingness-To-Pay; Market;

Utility; Approximation

I. INTRODUCTION

In the last years, the quality understanding in the telecom-
munications industry has been oscillating between user-centric
(early Quality of Service (QoS) and later Quality of Experience
(QoE)) and technical considerations (QoS as viewed today; but
also “objective” QoE). In this sphere, QoE, measured in Mean
Opinion Scores (MOS) on ACR-5 (Absolute Category Rating)
scale [1], provides a good basis for a Customer Satisfaction
(CS) metric (in analogy to the definition in [2]), which gives
indications on the user’s subjective service appreciation. Many
works like [3] treat QoE as equivalent to utilities, in the sense
of Von Neumann’s definition [4] (i.e., cardinal values, bound to
rationality and linearity), whether to describe the user’s service
valuation relative to alternatives (i.e., user utilities) or the ISP’s
profits (i.e., ISP utilities). Despite the obvious relation between
QoE and CS and the notable influence of QoE on the user
utility, QoE and utility are disparate for a variety of reasons:

1) Contrary to monetary metrics, e.g., currencies like
USD $, QoE measured in MOS non-linearly relates
to QoS input (cf. [5] or [6] relating to the Fechner
scale [7]) and is non-trivally associated to monetary
expenditures [8], i.e., Willingness-To-Pay (WTP).

2) While some users may appreciate high QoE (and indi-
rectly QoS), they may have no intentions to purchase
quality upgrades. Thus, monetary valuations, i.e., the
classical utility, and QoE cannot be assumed to be
generally identical.

3) Cognitive dissonance observations [9] induced by ac-
tive quality purchase decisions support the disparity.

4) The comparison and linkage of solitary QoE ratings
(s.t. test ranges, scenario, tariffs, service preferences,

usage intentions, etc.) is non-trivial. For example
when users start a videoconference, the utility for
audio calls will be lower despite contrary QoE ratings
for the current QoS in laboratory trials.

5) Standardized QoE test methodologies, e.g., [10], rec-
ommend training sessions in which the test ranges
are introduced to the users. In terms of utility assess-
ments, this priming of users will bias the assessment.

The market for quality-differentiated network services has
not taken on since its beginnings (see [11]), which may
partially be explained by the absence of utility figures. Among
others, modern network adaptation concepts like the controlled
service degradation (cf. [12]), a process trying to for example
maximize the social welfare through an intelligent and adap-
tive resource assignment, require utility information to opti-
mally function. Especially client-side content adaptations—
e.g., DASH [13] as used by services like Youtube1 and
Netflix2—have recently gained in importance.

Despite the desperate need for utility figures, the conver-
sion of isolated QoE results to a utility-equivalent form has
not yet been deciphered. QoE trials have not been designed to
test the direct comparison of QoE results for different services
or test ranges, and cross-service QoE models have centrally
focused on QoS inputs only3. Only limited efforts have been
dedicated to the mapping of QoE to monetary representations
(see Sec. II). This transitively hampers the derivation of
utility figures from QoE and in turn aggravates the practical
deployment of human-centric communication services.

Accordingly, the main contributions of this paper are
twofold: Firstly, a model approximating inter-service utilities
mainly from the concatenation of QoE trials results and their
relationship to WTP is proposed. Secondly, this model is tested
in a case study on Video on Demand (VoD) services.

Thus, the current work aims at filling this gap for the first
time by concatenating isolated QoE and comparable results in
order to derive inter-service user and ISP utilities. This work
specifically focuses on the realistic case of controlled service
degradations (see Sec. III) where a user’s preferred service

1https://www.youtube.com/, last accessed: April 17, 2015
2http://www.netflix.com, last accessed: April 17, 2015
3https://www.qu.tu-berlin.de/menue/forschung/laufende projekte/cross-

service cross-user quality of experience cscu-qoe/, last accessed: April 17,
2015



type or quality cannot be provisioned due to capacity limi-
tations, i.e., a resource scarcity scenario with clear customer
preferences.

The remainder of this work is structured as follows: Upon
related works in Sec. II and definitions in Sec. III we formulate
a novel utility approximation model in Sec. IV. The resulting
model will be instantiated in a case study in Sec. V. The
present work closes with concluding remarks in Sec. VI.

II. WILLINGNESS-TO-PAY (WTP)

Among the handful WTP for QoS trials is a rather small
experiment from the M3I project [14]. More recently two
larger laboratory studies have been conducted on Standard
Definition (SD) and High Definition (HD) VoD WTP and
QoE in 2011 [9] and 2012 [8], [15] respectively. The latter
experiment is hereinafter briefly revisited.

The 2012 laboratory study [8] has empirically tested the
WTP for network video quality upgrades in an HD scenario.
Test subjects have purchased improved bitrates with their
own money solely based on price cognitions (price monitor)
and quality perceptions (shown video). 17 quality classes Qx

(x = 0, . . . , 16) have been used with exponentially increasing
bitrates from 128 kbit/s at Qx=0 to 32768 kbit/s at Qx=16.
Three tariffs have been assessed in three test groups consisting
of 43 subject in total. At Qx=16 tariff A had a maximum price
pmax of e 2, tariff B of e 3 and tariff C of e 4 for 20 mins
at Q16 (with linear pricing from p = 0 at Q0). The following
notable median WTP values (i.e., WTP for a representative
user) have been retrieved: e 0.95 (across all tariffs), e 0.74
(tariff A), e 0.95 (tariff B) and e 1.26 (tariff C).

The demand dHD (i.e., number of buyers) has been fitted
per tested price-quality combination Qx to the beta, as com-
monly used for third-degree price discrimination [16], and the
normal distribution for comparison. The used beta regression
B prediction functions (using a technique aggregating bins of
three similar quality classes in order to reduce noise) for the
Probability Density Functions (PDF) of the demand are (cf.
Fig. 1)

B(x)A :=
e�1.32512�0.03140·QC(x+1)

1 + e�1.32512�0.03140·(x+1)
, (1)

B(x)B :=
e�1.10596�0.07594·QC(x+1)

1 + e�1.10596�0.07594·(x+1)
, (2)

B(x)C :=
e�1.00800�0.08073·QC(x+1)

1 + e�1.00800�0.08073·(x+1)
, (3)

where QC maps the bitrate in Mbit/s to the quality
classes x from [8], i.e., QC ⇡ 2.88537 · log(7.8128 ·
bw). For the normally distributed fitting, we obtain
NA(µ = 6.839;� = 3.234;x), NB(5.824, 3.735;x) and
NC(5.086, 3.524;x), where µ is the mean, � the variance and
x = QC(bw)). While the WTP and demand levels under
a single-choice (e.g., Do you accept quality A for price P?)
are well characterised by B(x){A,B,C} (R2 for the Cumulative
Distribution Function (CDF) strictly above 0.95; the demand
under a single choice), the customer segments, as relative
assignment when buyers can choose the most attractive Qx

from multiple offers, is best approximated by N{A,B,C} (R2 is

0.534, 0.779 and 0.848 for the PDF—cf. Fig. 1). In the single-
choice case, price discrimination refers to separate testings.

III. ASSUMPTIONS & DEFINITIONS

In the following, we will provide a series of assumptions
and definitions for the remainder of this work, which are
specifically tailored to the controlled service degradation case:

1) For calculability reasons, the purchasing situation of
each user is reduced to a one-shot decision process

with constant location, time, budget, interests and
WTP (absolute monetary expenditure) for services,
and user context (lighting, noise, etc.), which is
comparable to common empirical QoE laboratory test
restrictions. Users have currently an intention to use a
network-based service, e.g., video streaming or web
surfing.

2) Users have a strictly ordered preference

4 (i.e., the
relative preference of one service over another one;
also see [12]) for all considered services s1...n 2 S :
s1 � s2 � . . . sn�1 � sn (where s1 � s2 represents
a strict preference of s1 over s2 under the current
conditions). For example, when users want to watch
an episode of their favorite TV series at home at this
moment (primary service), the utility for any different
activity (e.g., watching a sportscast or listening to
music) is lower.

3) Users are willing to pay more for services they

prefer over any alternative (e.g., video stream over
sportscast). In other words, when users are intending
to watch a specific HD video stream, they have a
lower consumption utility for any alternative. When-
ever the QoS is acceptable, the following condition
therefore holds:

WTP (sk) > WTP (sk+1) > WTP (sk+2) . . . ,

where k = 1 is the primary service choice and k+1
is the next best alternative.

4) Specific attention will be paid to controlled degrada-

tions within (e.g., lowering bitrates or switching from
HD to SD and between service types (e.g., from video
to audio). The controlled degradation is triggered
whenever the QoE is critical and non-optimal, e.g.,
switching from poor HD to acceptable SD streams.
We will further assume users are willing to pay
more for more challenging media-rich services (cor-
responding to their service preferences). Otherwise,
a controlled degradation is futile, as lower bandwidth
consuming services with higher user utility have
dominantly higher ISP utility alike.

IV. APPROXIMATION MODEL

Due to the non-trivial relationship between WTP and QoE
and the small number of WTP measurements, the approxima-
tion of utilities needs to be carefully designed around known
empirical anchor points, i.e., WTP of other service types and

4This assumption represents a simplification of the reality for modelling
purposes, which may not be generally applicable, esp. for less concrete usage
scenarios.



●

●

●

●

●

●

●

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Quality class Q_x

N
or

m
al

ize
d 

de
m

an
d 

PD
F

● pmax=2
B(pmax=2)
N(pmax=2)

(a) Tariff A, p
max

= 2

●

●

●

●

●

●

●

0 5 10 15
0.

0
0.

1
0.

2
0.

3
Quality class Q_x

N
or

m
al

ize
d 

de
m

an
d 

PD
F

● pmax=3
B(pmax=3)
N(pmax=3)

(b) Tariff B, p
max

= 3

●

●

●

●

● ●

●

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Quality class Q_x

N
or

m
al

ize
d 

de
m

an
d 

PD
F

● pmax=4
B(pmax=4)
N(pmax=4)

(c) Tariff C, p
max

= 4

Fig. 1. Reconditioned demand PDF for quality classes Q
x

from [8] (fitted to the beta B and normal N distributions).

a broad set of QoE ratings where esp. adaptive streaming
scenarios may provide interesting starting points. As WTP
or QoE trials considering price cognitions across services are
rare, we originate our inter-service utility approximation from
classical QoE data based on the assumptions given in Sec. III.

A. Stage 1 (S1): Subjective QoE data without price

The first stage targets the concatenation of individual
QoE assessments for particular test ranges, service types or
scenarios, e.g., SD and HD video streams (cf. Fig. 2). This
process requires a recalibration of raw QoE data, which is
reflected in the hereinafter presented Stage 1 process:
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Fig. 2. QoE for controlled Video on Demand service degradations.

1) The isolated QoE curves for all considered services
are transferred to a functional representation, e.g., via
the commonly used logarithmic curve [17] fittings.

2) When taking the service preference into account, a
switching MOS needs to be defined. Located at the
switching MOS, users will be indifferent whether to
retain service k or the next best alternative k + 1
under the current QoS conditions, i.e., k’s original
and k + 1’s rescaled QoE curve intersect at this
switching point SPS1. This process stands in analogy
to Gomez et al.’s [18] QoE- and QoS-aware network
management where adaptations actions are triggered

whenever the QoE drops below a defined threshold.
Depending on the extent of the service (type) degra-
dation disutility we propose to use different switch-
ing MOS values. Whenever service k is distinctly
preferred over k + 1 the MOSSP

S1 is reasonably
parametrized with 1.5, while 2.5 may be suitable for
close calls. If the content type cannot be retained, the
switching MOS may be affected more severely. For
example from Full HD (1080p) to 720p video quality
we suggest to set the switching MOS to 3 (on ACR
scale) for service k, i.e., “fair” quality, while a drop
to CIF is better reflected by a MOS of 1.5. If not
even the content type can be retained, SPS1 may be
affected more severely. With the existence of more
comparable QoE data, a more fine-granular chain of
service degradations can be constructed.

3) The MOS data of each service sk+1 (e.g., SD video)
will be rescaled to peak at the switching MOS of
the next best service (e.g., HD) in the preference
of the user (sk)—see (4). With this process, the
QoE for service sk will strictly be higher in an
acceptable QoS range, while outside this range users
may reconsider their preference. SPS1 in particular
forms the new MOS maximum for service k + 1
relative to k instead of locally measured maximum
MOSmax of for example 4.5. As the considered QoS
range (minimum, maximum) will not be altered, the
new QoE curve will be less QoS-sensitive.

For the rescaling we propose to use

MOSk+1(QoS) := w(MOSk(QoS)) (4)

where

⇣
w(MOSk+1(QoS)) = MOSmax

⌘
=

=
⇣
MOSk(QoS) = MOSSP

S1

⌘
,

⇣
w(MOSk+1(QoS)) = MOSmin

⌘
=

=
⇣
MOSk+1(QoS) = MOSmin

⌘
.



MOSk+1(QoS) and MOSk(QoS) are the QoE functions
for service k and k + 1 s.t. the QoS, MOS{SP

S1,max,min} is
the switching, maximum and minimum MOS resp., and w is
a weighting function for intersecting the curves at SPS1.

B. Stage 2 (S2): User Utility

In this phase, the attention shifts from classical QoE data
to the analysis of QoE ratings under price cognitions p, i.e.,
QoEp. Data without price cognitions (as result of classical
QoE trials such as [19]) cannot directly be compared with QoE
values involving purchasing decisions. Thus, due to alterations
induced by price cognitions (expectations, justification of pur-
chases, etc.), the QoS-to-QoE shapes cannot be retained from
Stage 1, but need to be inferred from an empirically tested
case (w.l.o.g. we will assume it to be service k). Thereafter,
we can approximate k + 1’s curve as follows:

1) We transfer the SPS1 at Stage 1 to a Stage 2
representation SPS2: The MOS-level on k’s tested
QoE curve with price cognitions is retrieved for the
QoS demands at SPS1, e.g., 7.682 Mbit/s in Fig. 2.

2) In order to form QoEp
k+1 we rescale the known

QoEp
k curve between the minimum (QoE = 1.0) and

maximum point
⇣
QoS(SPS2), QoE(SPS2)

⌘
. The

service-specific minimum point is inferred from S1
for k+1 and shifted minorly according to the relative
movement of k’s minimum point from S1 to S2. The
entire rescaling process is described by a weighting
function w().

In analogy to Stage 1, the curves can be concatenated and
normalized in [0, 1] to form QoEp

k[k+1, i.e., the user utility
aggregating price and quality considerations.

C. Stage 3 (S3): ISP Utility

Empirically tested WTP and demand (customer segments)
curves for network quality—distinctly different to QoS-to-QoE
relations—will characterize the ISP’s utility curves. In order
to match untested services, the tested WTP curves will be
shifted by a factor derived from Stage 2, i.e., the Average

Service Preference Weighting (ASPW) (the average degree
of preferring the primary service k over a given alternative
k + 1). The ASPW is the fraction of point Pmin’s euclidean
distance E to SPS2 and Pmax, where point Pmax is where
QoEp

k[k+1 = MOSmax and point Pmin is where QoEp
k+1 =

MOSmin. Thus when shifting the SPS2 to a point with higher
bandwidth demands, the service k becomes more sensitive,
which would increase the value of the service k+1. The MOS
value at SPS2 reflects the satisfaction with the current pricing,
i.e., the higher the value, the smaller the quality sensitivity of
the demand.

The WTP as representative user revenue is characterized by
demand and price curves. As the user is indifferent between
the quality of services k and k + 1 at SPS2, we can infer
that the WTP will be identical at this point. In addition, at the
maximum of the considered bitrate range bwmax (e.g., where
QoEp

bw
max

= MOSmax) the difference will be determined
by the multiplier ASPW . Due to the non-trivial estimation
of the demand curves for the k + 1 service, we will adjust
tariffs to match the known WTP points for service k + 1.

When normalising the prospective user revenue in [0, 1], the
ISP utility results in a comparable form to the user utility.

D. Stage 4 (S4): Individualization (Optional)

Contrary to representative users, the ASPW parameter may
not entirely characterize the preference of each specific user.
One user may for example want “premium” video qualities and
may have a low WTP for audio qualities. Such user-specific
preference combinations may optionally be generated on the
basis of customer segments distributions (see Sec. II), i.e.,
using distributions as customer segment probability for each
service and user. The details of Stage 4 go beyond the scope
of the present work.

V. CASE STUDY: VIDEO ON DEMAND

In this section, we will apply our approximation technique
to a case study on VoD services. In particular, we will
model the controlled degradation from HD (primary service
k), backed by empirical QoE and WTP data, to SD video
(k + 1) streams.

A. Stage 1: Subjective QoE data without price

For SD video QoE we use the Video Quality Metric (VQM)
[20] (an efficient QoE estimator [21]) with the Common
Intermediate Format (CIF5) content given in [3]. Through a
reverse engineering of the highly QoE-sensitive “soccer” data
from [3] we have obtained the following logarithmic curve
(coefficient of determination R2 above 0.996):

MOSSD(bw) := 4.355147 + 0.6965466 · log(bw) . (5)

When transferring the empiric QoE data from [19] (chal-
lenging “CrowdRun” sequence, 1080p50) to an ACR-5 scale,
we can create a logarithmic MOS fit for HD7 h264 videos with
an R2 of almost 0.99:

MOSHD(bw) := �1.623658 + 1.532008 · log(bw) , (6)

where bw represents the bitrate in Mbit/s. While both Stage
1 and 2 data can be retrieved from [8], [15], we will rely on
the more extensive results from [19] for the QoE-only case.

Due to the significant experience difference between HD
and CIF content, we will construct an SP at MOS = 1.5
(between “bad” and “poor” experience). Applying the above
introduced method, we can rescale MOSSD as follows:

MOSSD(bw)0 := z ·(v+4.355147+w·0.6965466·log(bw))
(7)

where the parameters v (offset), w (steepness) and z
(maximum rescaling) are instantiations of the w() function for
logarithmic curves. We obtain v = �0.716 and w = 0.606

5CIF resolution is only 352 ⇥ 288 pixels.
6Almost 99% of the variance is explained by the model.
7HD resolution is 1920x1080 pixels.



around the SP (bw,MOSSD,MOSHD) = (7.68, 4.5, 1.5).
The parameter z = 1.5

4.5 = 1
3 where 4.5 is SD’s original

maximum and 1.5 is the new maximum8. The resulting
concatenated QoE curve is depicted in Fig. 2 where at any
available bandwidth the highest MOS is preferred by the user
(whether it is SD or HD content).

B. Stage 2: User Utility

In this phase, we will use the QoE results from [8], [15] as
fitted to a logarithmic shape from an aggregate pmax around
e 3 (due to sample size reasons):

MOSp
HD(bw) := 3.0143 + 0.3163 · log(bw) , (8)

where bw is the video bitrate in Mbit/s and p the price
cognitions. While the sketched shape will characterize both
the HD and SD curves, the SD curve is rescaled to its
minimum (bw = 0.008Mbit/s;MOS = 1.0), relative to HD’s
point, and maximum at the SPS2 (7.68 Mbit/s as in Stage
1; MOSp

HD(SPS2) = 3.65927). Thus, we obtain QoE curve
under price cognitions in the form

MOSp
SD(bw) := z · (v+3.0143+w · 0.3163 · log(bw)), (9)

where v = 0.999, w = 0.753 and z = 0.813 (calculated
as in Stage 1). When normalizing the concatenated curve
MOSp

SD[HD(bw) (best MOS for each bandwidth setting) to
[0, 1] with the considered minimum 0 at MOSp = 1.0 and the
considered maximum 1 at MOSp = 4.5, we obtain the per
service user utility Uu,

Uu
SD[HD(bw) :=

MOSp
SD[HD(bw)� 1.5

3.0
. (10)

C. Stage 3: ISP Utility

We derive the SD curve’s analogue for HD streams by
shifting the demand (dHD, see B(x)) and customer seg-
ments curves (see N(µ,�)) using the multiplier ASPW. Based
on the E between SPS2 and Pmax(bw = 22.557Mbit/s,
MOS = 4.5) resp., and Pmin(0.484Mbit/s, 1.0), we retrieve
ASPW = 0.345. Satisfying the identical WTP condition for
SD and HD services at SPS2 and the entire ASPW multiplier
at Pmax, we can derive the corresponding SD price pSD

around the given pHD in order to keep dSD = dHD:

pSD(bw) :=0.576541 + 0.0153333 · bw , (11)
pHD(bw) :=0.0919118 · (�0.128 + bw) . (12)

Together with the demand figures from Sec. II we can
estimate the ISP revenue UI both when users can choose
from a single (Fig. 3(a)) or multiple offers (Fig. 3(b)), formed
with price curve B (linear price increase s.t. the chosen
quality). Controlled degradations always improve UI whenever
the QoS is below the critical point SPS3 (mirroring SPS2 to

8Practically irrelevant values above 1.5 due to functional input form.

revenue/utility curves). Counterintuitively, high revenue levels
are obtained for very low qualities. This results from the
high demand for quality levels Qx with x < 10 (cf. Fig. 1),
which are shaped by the linearly increasing prices. This effect
becomes even more apparent for the SD content, where users
cannot profit from high quality classes and are hence not
willing to purchase those for the given price.
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I

(multi-choice) in [0, 1] based on demand CDFs and
new price curves.

The ISP utility can be formulated by normalizing the CDF
of the demand times the pSD/HD(bw) curves in [0, 1] (cf.
Fig. 4). Any QoS decline will lower the ISP utility (cf. Fig. 4
based on multi-choice data). Below the inflection point SPS3

controlled degradation successfully improves the ISP utility.

In operations, the SP has to consider both the user Uu

(long term retention of customers) and the ISP utility U i (short
term profits). Depending on the chosen objective, various
flavours of social welfare optimizations may be applied:

c · Uu
SD[HD(bw) + d · U i

SD[HD(bw) (13)

with c + d = 1 where the state c = 1.0 is user utility,
d = 1.0 is profit, and c = d = 0.5 is classical social welfare
optimization.

VI. CONCLUSIONS

Today, insufficient data exists on the relative service val-
uation (utility) in the communication services domain, e.g.,
w.r.t. to comparing QoE figures across services or trials.
Correspondingly, the derivation of user and ISP utilities around
QoE figures has not yet emerged, but desperately required
for efforts of creating and marketizing more user-oriented
communication services.

On that account, we have presented a technique to approx-
imate key QoE market figures, namely ISP and user utilities,
as global inter-service valuation metrics. Outcomes can be
used for controlled service degradations as experimentally
illustrated in a case study considering HD and SD qualities for
VoD services. The smart transfer to less demanding services
has yielded promising ISP and user utility increase potentials.
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Further empirical evidence is required for validating the
model and its WTP input so as to avoid propagation errors. In
addition, the parameterization of SPs (critical QoE points upon
which actions are triggered) and the linkage to technology,
e.g., to the access and resource assignment in [12] or flow
path computation in [22], require attention in future work.
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