
LiveMail: Personalized Avatars for Mobile Entertainment

Miran Mosmondor
Ericsson Nikola Tesla, Krapinska 45, p.p. 93, HR-10 002 Zagreb

miran.mosmondor@ericsson.com

Tomislav Kosutic
KATE-KOM, Drvinje 109, HR 10 000 Zagreb

tomislav.kosutic@kate-kom.com

Igor S. Pandzic
Faculty of electrical engineering and computing, Zagreb University, Unska 3, HR-10 000

Zagreb
igor.pandzic@fer.hr

Abstract

LiveMail is a prototype system that allows mobile subscribers to communicate using personalized 3D face models
created from images taken by their phone cameras. The user takes a snapshot of someone's face - a friend, famous
person, themselves, even a pet - using the mobile phone's camera. After a quick manipulation on the phone, a 3D
model of that face is created and can be animated simply by typing in some text. Speech and appropriate animation
of the face are created automatically by speech synthesis. Animations can be sent to others as real 3D animated
messages or as short videos in MMS. They can be used as fun messages, greeting cards etc. The system is based on
a client/server communication model. The clients are mobile devices or web clients so messages can be created, sent
and received on the mobile phone or on a web page. The client has a user interface that allows the user to input a
facial image and place a simple mask on it to mark the main features. The client then sends this data to a server that
builds a personalized face model. The client also provides an interface that lets the user request the creation of
animated messages using speech synthesis. It is planned to have several versions of the client: Symbian, midlet-
based, web-based, wap-based, etc. The server is responsible for sending messages adjusted to the capabilities of the
receiving platform. The server, Symbian client, midlet-based client and the web client have been implemented as
prototypes. We present the system architecture and the experience gained building LiveMail.

1. Introduction
Mobility and the Internet are the two most dynamic

forces in communications technology today. In parallel
with the fast worldwide growth of mobile subscriptions,
the fixed Internet and its service offerings have grown at
a rate far exceeding all expectations. The number of
people connected to the Internet is continuing to
increase and GPRS and WCDMA mobile networks are
enabling connectivity virtually everywhere and at any
time with any device. With advances in computer and
networking technologies comes the challenge of offering
new multimedia applications and end user services in
heterogeneous environments for both developers and
service providers.

The goal of the project was to explore the potential of
existing face animation technology [11] for innovative

and attractive services for the mobile market, exploiting
in particular the advantages of technologies like MMS
and GPRS. The new service will allow customers to
take pictures of people using the mobile phone camera
and obtain a personalized 3D face model of the person
in the picture through a simple manipulation on the
mobile phone. In this paper we present architecture of
LiveMail system. We describe how unique personalized
virtual characters are created with our face adaptation
procedure. Also, we describe clients that are
implemented on different platforms, most interestingly
on mobile platform, since 3D graphics on mobile
platforms is still in its early stages. Various different
network and face animation techniques were connected
into one complex system and we presented the main
performance issues of such system. Also, the system
uses a MPEG-4 FBA standard that could ultimately
enable video communication at extremely low

bandwidths, and work presented in this paper could
bring us one step further in that direction.

The paper is organized as follows. In the next section
we give a brief introduction on used standards and
technologies. Next, we present overall system
architecture continuing with more details on server and
client implementation in the following sections. Finally,
system performance evaluation is given in the section 6.

2. Background

2.1. 3D modelling
Creating animated human faces using computer

graphics techniques has been a popular research topic
the last few decades [1], and such synthetic faces, or
virtual humans, have recently reached a broader public
through movies, computer games, and the world wide
web. Current and future uses include a range of
applications, such as human-computer interfaces,
avatars, video communication, and virtual guides,
salesmen, actors, and newsreaders [12].

There are various techniques that produce
personalized 3D face models. One of them is to use 3D
modeling tool such as 3D Studio Max or Maya.
However, manual construction of 3D models using such
tools is often expensive, time-consuming and it
sometimes doesn’t result with desirable model. Other
way is to use specialized 3D scanners. In this way face
models can be produced with very high quality using
them in a mobile environment is not practical. Also,
there have been methods that included use of two
cameras placed at certain angle and algorithms for
picture processing to create 3D model [8]. Some other
methods, like in [9], use three perspective images taken
from a different angles to adjust deformable contours on
a generic head model.

Our approach in creating animatable personalized
face models is based on face model adaptation of
existing generic face model, similar to [14]. However, in
order to achieve simplicity on a camera-equipped
mobile device, our adaptation method uses a single
picture as an input.

2.2. Face animation
Created personalized face model can be animated

using speech synthesis [10] or audio analysis (lip
synchronization)[13]. Our face animation system is
based on the MPEG-4 standard on Face and Body
Animation (FBA) [5][2]. This standard specifies a set of

Facial Animation Parameters (FAPs) used to control the
animation of a face model. The FAPs are based on the
study of minimal facial actions and are closely related to
muscle actions. They represent a complete set of basic
facial actions, and therefore allow the representation of
most natural facial expressions. The lips are particularly
well defined and it is possible to precisely define the
inner and outer lip contour. Exaggerated values permit
to define actions that are normally not possible for
humans, but could be desirable for cartoon-like
characters.

All the parameters involving translational movement
are expressed in terms of the Facial Animation
Parameter Units (FAPU) (Figure 1.). These units are
defined in order to allow interpretation of the FAPs on
any facial model in a consistent way, producing
reasonable results in terms of expression and speech
pronunciation. They correspond to fractions of distances
between some key facial features (e.g. eye distance).
The fractional units used are chosen to allow enough
precision.

Figure 1. A face model in its neutral state and defined FAP units
(FAPU) (ISO/IEC IS 14496-2 Visual, 1999)

The FAP set contains two high level FAPs for
selecting facial expressions and visemes, and 66 low
level FAPs. The low level FAPs are expressed as
movement of feature points in the face, and MPEG-4
defines 84 such points (Figure 2.). The feature points
not affected by FAPs are used to control the static shape
of the face. The viseme parameter allows rendering
visemes on the face without having to express them in
terms of other parameters or to enhance the result of
other parameters, insuring the correct rendering of
visemes. A viseme is a visual correlate to a phoneme. It
specifies shape of a mouth and tongue for minimal
sound unit of speech. In MPEG-4 there are 14 static
visemes that are clearly distinguished and included in
the standard set. For example, phonemes /p/, /b/ and /m/
represent one type of viseme. Important thing for their
visualization is that the shape of the mouth of a speaking
human is not only influenced by the current phoneme,
but also by the previous and the next phoneme. In
MPEG-4, transitions from one viseme to the next are

defined by blending only two visemes with a weighting
factor. The expression parameter allows definition of
high-level facial expressions.

The FAPs can be efficiently compressed and included
in a Face and Body Animation (FBA) bitstream for low
bitrate storage or transmission. An FBA bitstream can
be decoded and interpreted by any MPEG-4 compliant
face animation system [3][4], and a synthetic, animated
face be visualized.

2.3. 3D graphics on mobile devices
Important aspect of our face animation system is 3D

graphics on mobile phones. The last few years have seen
dramatic improvements in how much computation and
communication power can be packed into such a small
device. Despite the big improvements, the mobile
terminals are still clearly less capable than desktop
computers in many ways. They run at a lower speed, the
displays are smaller in size and have a lower resolution,
there is less memory for running the programs and for
storing them, and the battery only last for a short time.

Figure 2. Face feature points (ISO/IEC IS 14496-2 Visual, 1999)

Rendering 3D graphics on handheld devices is still a
very complex task, because of the vast computational
power required to achieve a usable performance. With
the introduction of color displays and more powerful
processors, mobile phones are becoming capable of

rendering 3D graphics at interactive frame rates. First
attempts to implement 3D graphics accelerators on
mobile phones have already been made. Mitsubishi
Electric Corp. announced their first 3D graphics LSI
core for mobile phones called Z3D in March 2003. Also
other manufacturers like Fuetrek, Sanshin Electric,
Imagination Technologies and ATI published their 3D
hardware solution for mobile devices a few months
after.

Beside hardware solutions, other important thing for
3D graphics on mobile devices is availability of open-
standard, well-performing programming interfaces
(APIs) that are supported by handset manufacturers,
operators and developers alike. These are OpenGL ES
(OpenGL for Embedded Systems) and Java Mobile 3D
graphics (also known as JSR 184) that have emerged in
last several months.

3. System architecture
The basic functions of the LiveMail service are

simple creation of personalized face model, transmission
and display of such virtual character on various
platforms. The creation of such personalized face model
consists of recognition of characteristic face lines on the
taken picture and adjustment of generic face model to
those face lines. The most important face lines are size
and position of face, eyes, nose and mouth. Speech
animation of the character is created from the input text.
More details on the each module implementation are
given in next chapters while this chapter describes
system architecture.

Personalization of virtual characters and creation of
animated messages with speech and lips synchronization
is a time-consuming process that requires more
computational power then the phone provides. Our
system architecture is defined by this limitation.
Capabilities of mobile devices have improved in last few
years, but they are still clearly not capable of such
demanding computing. Thus, our system is not
implemented on one platform, rather is divided in
several independent modules. The system is based on a
client/server communication model. The basic task of
the server is to perform computationally expensive
processes like personalization of virtual character and
creation of animated messages with speech and lips
synchronization. The client side is responsible for
displaying the animated message of the personalized
virtual character and handling user requests for the
creation of a new personalized virtual character and its
animated message through proper user interface (Figure
3.). In this way LiveMail clients are implemented on

various platforms: Symbian-based mobile devices,
mobile devices with Java support (Java 2 Micro
Edition), WAP and Web interfaces.

Figure 3. Simplified use-case scenario

The client application consists of a user interface
through which users can create new personalized virtual
characters and send animated messages, preview created
messages and view received animated messages. When
creating the personalized character the interface allows
the user to input a facial image and place a simple mask
on it to mark the main features. After selecting main
face features the client sends this data to the server that
builds a personalized face model (Figure 4.).

Figure 4. Personalized 3D face model creation

When creating animated messages, the user selects a
virtual character, inputs text and addresses the receiver.
The client application then sends a request for creation
of the animated message to the server, which then
synthesizes the speech and creates matching facial
animation using the text-to-speech framework. The

Figure 5. Creating animation message through client user interface

animated message is then adjusted to the capabilities of
the receiving platform. For mobile devices that cannot
display even medium quality 3D animation, animated
message it is converted to a short video or animated GIF
and sent by MMS (Figure 5.).

4. The server
The server is a combination of a light HTTP server

and an application server (Figure 6.). The HTTP server
provides clients with user interface and receives
requests, while the application server processes client
requests: creates new personalized 3D face models and
animation messages. The user interface is dynamically
generated using XSL transformations from an XML
database each time client makes a request. The database
holds information about user accounts, their 3D face
models and contents of animated messages. The
LiveMail server is a multithreaded application and the
light HTTP server can simultaneously receive many
client requests and pass them to the application server
for processing. The application server consists of many
modules assigned for specific tasks like: 3D face model
personalization, animation message creation and more.
During the process of 3D face model personalization
and animated message creation there are resources that
cannot be run in multithread environment. Therefore
they need to be shared among modules. Microsoft’s
Text to speech engine, which is used for speech
synthesis and as a base of 3D model animation, is a
sample of a shared resource. To use such a resource all
application server modules need to be synchronized.

Figure 6. Simplified server architecture

The server’s primary task is virtual character
adaptation. The client’s request for new virtual character
creation holds entry parameters for adaptation process:
the picture of person whose 3D model is created and the
characteristic facial points in that picture (creating face
mask). The server also has a generic 3D face model that
is used in adaptation. Based on these inputs, the server
deforms and textures the generic model in such a way
that it becomes similar to the face in the picture, and
thus produces the new 3D model ready for animation.
The model is stored on the server for later use in VRML
format.

The virtual character adaptation algorithm starts by
mapping characteristic facial points from a facial picture
to characteristic points in corresponding generic 3D face
model. This initial mapping is followed by three main
stages of adaptation:

The first stage is normalization. The highest and the
lowest point of generic 3D face model are modulated
according to the characteristic facial points from the
facial picture. We translate the generic 3D face model to
highest point from facial picture (point 11.4 on Figure 2.
). The size of the translated model does not match the
size of the facial picture mask so we have to scale it. We
calculate vertical ratio of generic model and facial
picture mask and move every point of the generic model
in corresponding ratio. We distinguish vertical and
horizontal scaling. In horizontal scaling we look at the
horizontal distance between every point to highest point
from facial picture, relative to face axis symmetry.
Vertical scaling is easier, as there is no axis symmetry.

The second stage is processing. We distinguish
texture processing and model processing. With N
existing points we create a net of triangles that cover all
normalized space. It’s important to notice that beyond
the face the net must be uniform. Based on known
points and known triangles the interpolator algorithm is
able to determine the coordinates of any new point in
that space using interpolation in barrycentric
coordinates. The interpolator used here is described in
[15]. We forward characteristic points received from
client’s request to an interpolator. The interpolator
(based on triangles net) will determine location of other
points that we need to create new model.

The third stage of the algorithm is renormalization. It
is practically the same algorithm as in first segment,
except we roll back model from normalized space back
to space where it was before starting of algorithm.

5. The client
The animation itself is created on the server that

provides users with transparent access, meaning various
client types could be used. After personalized face
model with proper animation is created, it is send back
to the client, where it can be previewed. Multi-platform
delivery, and the capability to implement support for
virtually any platform is one of the contributions of this
system. Our strategy is to use a bare-minimum face
animation player core. This core can be easily ported to
any platform that supports 3D graphics.

The face animation player is essentially an MPEG-4
FBA decoder. When the MPEG-4 Face Animation
Parameters (FAPs) are decoded, the player needs to
apply them to a face model. Our choice for the facial
animation method is interpolation from key positions,
essentially the same as the morph target approach
widely used in computer animation and the MPEG-4
Face Animation Tables (FAT) approach [2]. FATs
define how a model is spatially deformed as a function
of the amplitude of the FAPs. Interpolation was the
earliest approach to facial animation and it has been
used extensively. We prefer it to procedural approaches
and the more complex muscle-based models because it
is very simple to implement, and therefore easy to port
to various platforms; it is modest in CPU time
consumption; and the usage of key positions (morph
targets) is close to the methodology used by computer
animators and could be easily adopted.

The way the player works is the following. Each FAP
(both low- and high-level) is defined as a key position of
the face, or morph target. Each morph target is described
by the relative position of each vertex with respect to its
position in the neutral face, as well as the relative
rotation and translation of each transform node in the
scene graph of the face. The morph target is defined for
a particular value of the FAP. The position of vertices
and transforms for other values of the FAP are then
interpolated from the neutral face and the morph target.
This can easily be extended to include several morph
targets for each FAP and use a piecewise linear
interpolation function. However, current
implementations show simple linear interpolation to be
sufficient in all situations encountered so far. The vertex
and transform movements of the low-level FAPs are
added together to produce final facial animation frames.
In case of high-level FAPs, the movements are blended
by averaging, rather than added together.

Due to its simplicity and low requirements, the face
animation player is easy to implement on a variety of

platforms using various programming languages.
Additionally, for the clients that are not powerful
enough to render 3D animations, the animations can be
pre-rendered on the server and sent to the clients as
MMS messages containing short videos or animated
GIF images. In next chapters, we describe the following
implementations of the client: the Symbian client, Java
applet-based web client, and a generic mobile phone
client built around J2ME, MMS and WAP. The first two
implementations are full 3D clients, while the last one
only supports pre-rendered messages.

5.1. Symbian client
Our mobile client is implemented on Symbian

platform as a standalone C++ application. After taking a
photo with camera, the user needs to adjust the mask
with key face part outlined (Figure 7.). The mask is
used to define 26 feature points on the face that are then,
together with picture sent to the server for face
adaptation, as described previously.

Figure 7. Symbian user interface and mask adjustment

After creation of personalized face model, it is sent
back to the user where it can be previewed (Figure 8.).
The face animation player on Symbian platform for
mobile devices is based on DieselEngine. The
DieselEngine is collection of C++ libraries that helps
building applications with 3D content on various
devices. DieselEngine has low-level API (Application
Program Interface) that is similar to Microsoft DirectX
and high level modules had to be implemented. The
most important is a VRML parser that is used to convert
3D animatable face model from VRML format to
Diesel3D scene format (DSC). Other modules enable
interaction with face model like navigation, picking and
centering.

Figure 8. 3D face model preview on Symbian platform

5.2. Java applet-based web client
A parallel web service is also offered as an interface

to the system that allows users to access all the
functionality: creating new personalized virtual
characters and composing messages that can be sent as
e-mail. The system keeps the database of all the created
characters and sent messages for a specific user
identified by e-mail and password.

As another way of creating new personalized virtual
characters, the Java applet is used with the same
functional interface described earlier. Compared to
mobile input modules, the Java Applet provides more
precision in defining feature points since the adjustment
of the mask is handled in higher resolution of the
desktop computer. Also the cost of data transfer, which
is significantly cheaper compared to mobile devices,
makes it possible to use higher resolution portrait
pictures in making better looking characters.

Figure 9. Mask adjustment on Java applet-based web client

New messages can be made with any previously
created characters. The generated animation is stored on
the server and the URL to the LiveMail is sent to the
specified e-mail address. The html page URL is
produced dynamically. The player used to view
LiveMails is a Java applet based on the Shout3D

rendering engine. Since it is a pure Java implementation
and requires no plug-ins, the LiveMail can be viewed on
any computer that has Java Virtual Machine installed.

5.3. Generic mobile client built
around J2ME, MMS and WAP

The face animation player is easy to implement on a
variety of platforms using various programming
languages. However, for the clients that are not powerful
enough to render 3D animations we an offer alternative:
the animations can be pre-rendered on the server and
sent to the clients as MMS messages containing short
videos or animated GIF images.

Figure 10. Composing LiveMail message on web client

A LiveMail WAP service is also provided for mobile
phones. It provides the functionality of creating and
sending LiveMail with previously generated
personalized characters.

User interface through which personalized face model
is created is also implemented on Java 2 Micro Edition
(J2ME) platform. However, this platform alone does not
define access to native multimedia services like, for
example, camera manipulation and picture access. So,
additional J2ME package, called Mobile Media API
(MMAPI), was used.

6. System performance evaluation
In this section system performance evaluation is

presented. First of all, the size of create new
personalized virtual character request greatly depends on
size of the face image. Other request data (user name,
virtual character name, face mask parameters) is always
approximately 1K. With average picture of 120x160
pixels request size is 15K. Request to create animated
message carries few data and is always smaller than 1K.

6.1. Server
The described adaptation algorithm is very time

consuming. Our measurements show that 98% of entire
process is spent on the adaptation algorithm. The
remaining 2% is spent on model storage and preview
images for client user interface. With a generic 3D face
model constructed of approx. 200 polygons adaptation
algorithm takes 7.16 seconds on an AMD Athlon XP
2800+ (Figure 11.). Each adaptation algorithm started
by client’ s request is run in a separate thread so
multiprocessor systems can handle simultaneous client
requests much faster.

Time to create new virtual character

7,16
13,67

42,47

77,78

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 2 5 10

number of simultaneous client connections

tim
e

(s
)

AMD Athlon
XP 2800+
512 DDR
RAM
PCMark04
Score 3125

Figure 11. Time to create a new virtual character in respect
to number of simultaneous client connections

The second most valuable server’ s task is creation of
animated messages. Its execution time depends on
message text length (Figure 12.). Also, Microsoft Text
to Speech engine cannot process simultaneous text to
speech conversions so all client requests are handled one
at the time (while all others wait).

Time to create animated message

4,89
6,13

9,19
11,38

13,34

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00

5 10 15 20 25

number of words in message
(average w ord length: 6 characters)

tim
e

(s
)

AMD Athlon
XP 2800+
512 DDR
RAM
PCMark04
Score 3125

Figure 12. Time to create animated message in
respect to number of words in message

6.2. Client
On the other side, required bandwidth for displaying

animated message on Symbian client is approx 0.3 kbit/s

for face animation, and that is considerably less than
sending raw video in any format. The reason for this is
that FBA bitstream is built upon model based coding as
was described previously. If we take analogy with voice,
it uses the same principle like in GSM codec; it sends
only parameters that are used on decoding side by a
model to reproduce a sound, or in our case a face
animation.

In addition to face animation, other bandwidth
requirements for displaying animated message on
Symbian client are 13 kbit/s for speech and
approximately 50K download for an average face
model. The Web client requires additional 150K
download for the applet.

The Symbian client implementation was tested on
Sony Ericsson P800 mobile device with various static
face models. Interactive frame rates were achieved with
models containing up to several hundreds polygons. The
generic face model used in our LiveMail system uses
approximately two hundred polygons and its
performance is shown in Figure 13. After animation has
started (in this case in 21st second), frame rate drops to
average of 10 frames per second (FPS), but this is still
relatively high above the considered bottom boundary
for interactive frame rates on mobile devices.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40
time (s)

FP
S

(1
/s

)

Figure 13. Generic face model performances on SE P800 mobile
device

Web client showed performance of 24-60 fps with
textured and non-textured face models of up to 3700
polygons on a PIII/1000. This performance is
satisfactory for today’ s mobile PC user connecting to the
Internet with, for example, GPRS. More details on this
implementation and performance can be found in [11].

7. Conclusions
In this paper we have introduced a system that can be

used as a pure entertainment application. Users deliver

personalized, attractive content using simple
manipulations on their phones. They create their own,
fully personalized content and send it to other people.
By engaging in a creative process - taking a picture,
producing a 3D face from it, composing the message -
the users have more fun, and the ways they use the
application are only limited by their imagination.

LiveMail is expected to appeal to younger customer
base and to promote services like GPRS and MMS. It is
expected to directly boost revenues from these services
by increasing their usage. Due to highly visual and
innovative nature of the application, there is a
considerable marketing potential. The 3D faces can be
delivered throughout various marketing channels,
including the web and TV, and used for branding
purposes.

Besides entertainment aspects, there has been a great
deal of research work. Barriers were crossed with the
face animation player on mobile platform and with 3D
face model personalization on the server. We have
connected various different network technologies and
face animation techniques in one complex system and
presented the experiences gained building such a
system. Also, the system uses a MPEG-4 FBA standard
that could ultimately enable video communication at
extremely low bandwidths. Although emphasis was on
the entertainment, work presented in this paper could
bring us one step closer to that goal.

8. Acknowledgments
We would like to acknowledge Visage Technologies

AB, Linköping, Sweden, for providing the underlying
face animation technology used for the system described
in this paper.

References
[1] F.I. Parke, K. Waters, Computer Facial animation,

A.K.Peters Ltd, 1996., ISBN 1-56881-014-8
[2] Igor S. Pandzic, Robert Forschheimer (editors),

MPEG-4 Facial Animation - The standard,
implementations and applications, John Wiley &
Sons, 2002, ISBN 0-470-84465-5.

[3] M. Escher, I. S. Pandzic, N. Magnenat-Thalmann,
Facial Deformations for MPEG-4, Proc. Computer
Animation 98, Philadelphia, USA, pp. 138-145,
IEEE Computer Society Press, 1998.

[4] F. Lavagetto, R. Pockaj, The Facial Animation
Engine: towards a high-level interface for the
design of MPEG-4 compliant animated faces, IEEE

Trans. on Circuits and Systems for Video
Technology, Vol. 9, No. 2, March 1999.

[5] ISO/IEC 14496 - MPEG-4 International Standard,
Moving Picture Experts Group,
http://www.chiariglione.org/mpeg/standards/mpeg-
4/mpeg-4.htm

[6] 3D Arts, DieselEngine SDK,
http://www.3darts.fi/mobile/de.htm

[7] T. Fuchs, J. Haber, H.-P. Seidel, MIMIC - A
Language for Specifying Facial Animations,
Proceedings of WSCG 2004, 2-6 Feb 2004, pp. 71-
78.

[8] Z. Liu, Z. Zhang, C. Jacobs, M. Cohen, Rapid
Modeling of Animated Faces From Video, In
Proceedings of The Third International Conference
on Visual Computing (Visual 2000), pp 58-67,
September 2000, Mexico City

[9] H. Gupta, A. Roy-Chowdhury, R. Chellappa,
Contour based 3D Face Modeling From A
Monocular Video, British Machine Vision
Conference, 2004.

[10] Pelachaud, C., Badler, N., and Steedman, M.,
Generating Facial Expressions for Speech,
Cognitive, Science, 20(1), pp.1–46, 1996.

[11] Igor S. Pandzic, Jörgen Ahlberg, Mariusz Wzorek,
Piotr Rudol, Miran Mosmondor, Faces
Everywhere: Towards Ubiquitous Production and
Delivery of Face Animation, Proceedings of the
2nd International Conference on Mobile and
Ubiquitous Multimedia, Norrkoping, Sweden, 2003

[12] Igor S. Pandzic, Life on the Web, Software Focus
Journal, John Wiley & Sons, 2001, 2(2):52-59.

[13] P. Hong, Z. Wen, T. S. Huang, Real-time speech
driven Face Animation, in I. S. Pandzic, R.
Forchheimer, Editors, MPEG-4 Facial Animation -
The Standard, Implementation and Applications,
John Wiley & Sons Ltd, 2002.

[14] W.Lee, N.Magnenat-Thalmann, Fast Head
Modeling for Animation, Journal Image and Vision
Computing, Volume 18, Number 4, pp.355-364,
Elsevier, March, 2000

[15] Igor S. Pandzic, Facial Motion Cloning, Graphical
Models journal.

