
An Experimental Evaluation of a QoS Signaling API for
Network-aware Multimedia Applications in NGN

Ognjen Dobrijevic
University of Zagreb, FER

Unska 3, HR-10000 Zagreb, Croatia
+385 1 6129 755

ognjen.dobrijevic@fer.hr

Maja Matijasevic
University of Zagreb, FER

Unska 3, HR-10000 Zagreb, Croatia
+385 1 6129 757

maja.matijasevic@fer.hr

ABSTRACT
Heterogeneous environment of the Next Generation Network,
involving diverse user devices and access options, as well as
versatile network infrastructure, calls for closer cooperation
between network entities and multimedia applications in
achieving end-to-end Quality of Service (QoS). This typically
involves a signaling mechanism, as a means for an application to
request a certain QoS from the network, and in return to receive
notifications related to various network conditions of interest,
hence possibly adapting to them. This so-called “network-aware”
approach served as the basis for designing the Dynamic Service
Adaptation (DSA) Model for signaling, negotiation, and
adaptation of QoS parameters for multimedia services. Based on
DSA Model, the DSA API was developed. It encompasses generic
functionality related to session-level QoS signaling. The paper
presents designed signaling scenarios and an experimental
evaluation of DSA API in a laboratory environment, using a
prototype network-aware multimedia application that features a
virtual 3D Web-based environment.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols - Applications; C.2.4 [Computer-Communication
Networks]: Distributed Systems - Client/server; C.4
[Performance of Systems]: Performance attributes.

General Terms
Measurement, Performance, Languages.

Keywords
Multimedia, QoS, signaling, negotiation, Application
Programming Interface (API), IP Multimedia Subsystem (IMS).

1. INTRODUCTION
The concept of the Next Generation Network (NGN) assumes an
environment consisting of diverse access options and user
devices, as well as versatile network infrastructure [10]. End-user

and service requirements on network Quality of Service (QoS)
increase in such an environment, calling for closer cooperation
between network entities and applications to achieve desirable
QoS level. Targeted cooperation comprises a signaling
mechanism. It enables applications to request a special treatment
from the network entities to be applied to the associated traffic
flows, as well as to receive information on particular network
conditions, possibly adapting to them. Such applications are
referred to as “network-aware” applications [1].

The “network-aware” approach served as the basis for designing
the Dynamic Service Adaptation Model (DSAM) [7]. DSAM is a
generic model that provides signaling, negotiation, and adaptation
of QoS parameters for multimedia services. It is built upon the
concept of end-to-end QoS signaling for adaptive IP multimedia
applications, which are currently being revisited from the NGN
perspective. The QoS signaling and negotiation functionality of
DSAM is “wrapped” into an Application Programming Interface
(API), described in our previous work [2]. This API, named
Dynamic Service Adaptation API (DSA API), is used to extend
applications with the QoS signaling functionality at the session
layer. Such an API relieves application developers of the need to
know signaling protocol details and simplifies the reuse of the
implemented functionality, possibly leading to shorter
development time.

This work presents an experimental evaluation of DSA API in a
laboratory environment, using a prototype multimedia application.
The prototype application is implemented using the API, thus
incorporating the ability to receive information that can be used to
adapt the service to variable conditions of the environment.
Performed evaluation is based on carrying out measurements in a
laboratory testbed and analyzing results with proposed
performance parameters.

The paper is organized into six sections, as follows. Sections 2
and 3 provide a brief overview of DSAM and DSA API. Section 4
describes the prototype network-aware application and its
behavior. DSAM laboratory implementation serves as the
environment for evaluating the API. Section 5 presents designed
signaling scenarios, measurements procedures, and analysis of
evaluation results. Section 6 summarizes and concludes the paper.

2. DSA MODEL
DSAM is a model for negotiation and dynamic adaptation of QoS
parameters for advanced multimedia services. We briefly describe
the model in this section, and the interested reader is referred to
[7] for more details.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MoMM2008, November 24–26, 2008, Linz, Austria.
(c) 2008 ACM 978-1-60558-269-6/08/0011 $5.00.

The model deals with end-to-end (E2E) signaling of QoS
requirements at the session level. It includes the overall process of
QoS negotiation during session establishment when a user
accesses a multimedia service, as well as of renegotiation of QoS
parameters and service adaptation in the course of an active
session. DSAM considers the heterogeneity of the NGN by
addressing following (groups of) parameters, which are used
during QoS (re)negotiation:

• availability of network resources and their costs (relating to
the communication network),

• service requirements (relating to the multimedia service and
server platform hosting it), and,

• client characteristics, which include end-user terminal
features and access network options, as well as user
preferences (relating to the user’s personal preferences and
client platform).

A set of parameters that relate to personal preferences and client
platform are referred to as “client profile”, while the “service
profile” includes service-related parameters and requirements.

Renegotiation and adaptation procedures are initiated throughout
the session duration, in response to dynamic changes in addressed
model parameters. QoS renegotiation can be invoked by each of
the sides engaged: the client, the server, and the communication
network (i.e. network QoS control entities). The model
particularly focuses on the following scenarios:

• Session establishment involves negotiating initial session
parameters and setting up the session;

• Change in service requirements relates to addition or
subtraction of service components (e.g., starting media
streaming) which result in signaling and negotiation
process, for instance, to modify current resource
reservation;

• Change in client profile refers to a substantial variation in
any client profile parameter (e.g., replacement of the user
terminal) and results in sending a new client profile from
the client side; and

• Change in resource availability includes an alteration of
authorized network resources and results in signaling the
new conditions by the network QoS control entities.

As DSAM is independent of the specific network architecture or
scenario, its applicability has been demonstrated by mapping it
onto a standardized NGN architecture, the 3rd Generation
Partnership Project (3GPP) IP Multimedia Subsystem (IMS) [11].
IMS specifies standard interfaces and service capabilities, along
with a common IP based infrastructure, which provide easier
introduction and utilization of new (multimedia) services. The
exchange of signaling messages between involved DSAM entities
has been designed in accordance with the 3GPP specifications
[11][12][13], namely, for each of the scenarios addressed by the
model. Developed signaling flows have served as the basis for
signaling functionality of DSA API. It should be noted that a
similar idea is currently being explored in Java Community
Process for IMS in general, under JSR 281 IMS Services API
[14]. This IMS API is intended to provide a high-level API for
accessing IMS services, by hiding IMS technology details and
exposing service-level support for easier development of
applications.

3. DSA API
The main purpose of DSA API is to extend applications of the
client (representing an end-user) and the server (hosting a
multimedia service) with QoS signaling functionality at the
session layer. DSA API involves signaling the initial service
requirements (service profile), the initial client characteristics
(client profile), and the final service configuration required to
establish the session. Figure 1 shows the communication
environment corresponding to the NGN, which influenced the
design of this API. It also illustrates the scope of DSA API as
related to DSAM. Applications incorporating the API are capable
of exchanging messages with the network control entities, thus
complying with the network-aware approach.

Using designed message exchange between the signaling
components of the API, the communication end-points are able to
establish or terminate session, signal changes that dynamically
arise in the environment after the session has been established,
and (re)negotiate service parameters (along with QoS
configurations). The signaling protocol messages are used to
convey parameters for authorization and reservation of network
resources, essential for an adequate network response to client and
service requirements.

DSA API has been organized in two parts: the client-part, known
as DSA Client API, and the server-part, known as DSA Server
API. DSA Client API is to be used by the client
application/process when communicating with DSAM signaling
entities in the network and the server side, while DSA Server API
is to be utilized by the server application/process when
communicating with DSAM signaling entities and the client side.

DSA API has been implemented in Java programming language.
Client and service profiles have been specified using the
Extensible Markup Language (XML). Parser for these profiles
was implemented using the Simple API for XML (SAX) parser
[17]. As mentioned earlier, the signaling flows related to scenarios
addressed by DSAM are based on 3GPP IMS specifications and
use the IETF’s Session Initiation Protocol (SIP) [6] for
performing E2E signaling. DSA API Reference Implementation
has been realized with the NIST-SIP API [16]. The Reference
Implementation includes approximately 5000 lines of Java source
code. (This also gives a rough idea of the benefit for the
application developer from using the API.) Some details of DSA
API implementation have been presented in [2]. The API is made
available under GPL-like license at http://ve.tel.fer.hr.

Figure 1. The scope for the application of DSA API

Signaling functionality for DSAM scenarios can be invoked using
the following methods of the API:

• establishSession,

• signalNewServiceRequirements,

• signalNewClientCapabilities,

• terminateSession, and,

• signalNewResourceAvailability.

The first four methods may be invoked by the application (the
client and/or the server), and the last one may be invoked by the
network, i.e. the network signaling entity that has received
resources-related information from the lower level QoS
enforcement and monitoring network entities.

4. DSAM LABORATORY PROTOTYPE
DSAM laboratory implementation (Figure 2) logically consists of
several functional components. Client application runs within the
User Equipment (UE), i.e. a device by means of which the user
accesses the multimedia service. Server application runs on an
Application Server (AS) hosting the prototype application (NVR
AS). Client and Server applications incorporate DSA API
functionality. Negotiation which takes place between UE and
NVR AS uses signaling messages to convey client and service
profiles. The profiles are being transferred to another DSAM-
specific AS, which hosts functions for matching the profiles and
optimization of QoS parameters (QMOP AS) [8]. These functions
serve to determine feasible service configuration, which is to be
delivered to the user, with optimized amount of required network
resources. In the context of IMS, QMOP AS thus acts as a QoS
service enabler. Feasible service configuration is being forwarded
through network entities (in IMS, P-CSCF and S-CSCF) to
elements responsible for authorization and reservation of network
resources (in IMS, PDP and PEP). They control an emulated data
channel (Virtual channel) used for delivering multimedia content
with applied QoS. Monitoring data flows provides feedback
information to be used for QoS adaptation (e.g., for invoking the
signaling denoting a significant change in resource availability).

4.1 Prototype multimedia application
The prototype network-aware multimedia application, named
Inheritance Chase (Figure 3), is placed on NVR AS. Inheritance
Chase is a multi-user virtual 3D environment on the Web. In this
interactive game, players follow a set of streaming audio/video
“clues”, which are to lead the winner to a hidden last will needed
to receive the vast inheritance.

P-CSCF

PDP

NVR AS

data flow

UE

Client
platform

SIP

COPS/Diameter

SIP proxy

S-CSCF

SIP proxy
SIP

SIP

QMOP AS

Matching client/
service profiles

QoS optimization

data flow

Service

content

SIP

Server
platform

DSA

API
DSA

API

Virtual channel
PEP

Figure 2. DSAM laboratory implementation

Figure 3. Prototype multimedia application

This multimedia application has been developed in three different
service configurations, each differing in number of media
components and their quality:

(1) a configuration that supports “high-quality” audio-video
streaming,

(2) a configuration that supports “low-quality” audio-video
streaming, and

(3) a configuration that only supports audio streaming (and
no video).

The particular service configuration to be used is determined by
the negotiation procedure specified by DSAM.

5. EVALUATION OF DSA API
We propose six parameters for evaluation of DSA API. To the
best of our knowledge, there is no standardized evaluation
approach to assess the performance of a SIP signaling API and its
impact on the effectiveness of application execution. We used
some similar research efforts [3][4][5][9] as guidelines. The
following parameters have been defined, for the three signaling
scenarios addressed by DSAM:

• Response time – the time interval required for all the
messages to be exchanged in a particular signaling scenario,

• Signaling throughput – the overall amount of signaling
information (including sizes of: IP protocol header; header
introduced by the TCP transport protocol; SIP protocol
header; and the SIP message body) that is sent and received
by DSA API components within a given signaling scenario,

• Signaling header size – the average size of SIP protocol
header in the signaling messages (Figure 4) for a particular
signaling scenario,

• CPU load – the average amount of CPU load over time that
is induced by the execution of DSA API components,

• Memory consumption – the average amount of memory
consumption that is induced by the execution of DSA API
components, and

• Initialization time – the amount of time required to initiate
DSA API components.

Figure 4. Illustration of signaling message header

The signaling scenarios are described next.

5.1 Signaling scenarios for measurements
All measurements are performed while an end-user is accessing
the prototype multimedia application and navigating through the
virtual environment. After the application is accessed and service
content is retrieved, changes in addressed DSAM parameters are
emulated. This triggers adequate signaling and renegotiation
procedures, showing the capability of the application to
participate in the negotiation process and possibly adapt to the
changes.

Each measurement includes the following “evaluation scenario”.
It starts with the end-user sending the request for establishing
session, with this request specifying the user’s ability to support
“high-quality” audio-video streaming (in that particular evaluation
scenario). During the negotiation process, the parameters for
reservation of network resources are conveyed. Session
establishment results in the initial retrieval of the service content
(loading the 3D scene shown in Figure 3). The Unified Modeling
Language (UML) sequence diagram, shown in Figure 5, depicts
the signaling flow that results in session establishment.

Using the method establishSession provided by DSA API, UE is
capable of initiating session establishment. This method must be
provided with a certain client profile. In this evaluation scenario, a
client profile describing an access option consisting of a personal
desktop computer (PC) and the UMTS (Universal Mobile
Telecommunications System) network is used. Moreover, the
profile specifies user’s desire to retrieve service components of
“high-quality”. Each session establishment, when using SIP,
begins with sending a SIP INVITE request. Configuration of the
laboratory testbed is set up in such a way that all the signaling
messages, which are exchanged, traverse P-CSCF, S-CSCF, and
QMOP AS. NVR AS signals service requirements in a SIP
response to the INVITE. Service parameters that are being
negotiated include, among others, service components in terms of
media types, their format and desired media codec (if applicable),
level of QoS, etc. Successful session establishment ends with the
UE sending a SIP ACK request. Session establishment results in
final service configuration produced by QMOP AS, which is used
for reservation of network resources and initial virtual 3D scene
(Figure 3) retrieval.

While navigating through and exploring the virtual world, the user
triggers the audio/video streaming clues. This addition of new
multimedia components to the session initiates signaling of new
service requirements and negotiation of corresponding QoS
parameters (DSAM scenario Change in service requirements).
Successful negotiation results in audio/video streaming being
started. The UML sequence diagram, shown in Figure 6, depicts
the signaling flow that results in signaling new service
requirements. In this evaluation scenario, the change refers to
addition of audio/video streaming upon user’s request. After
receiving such a request, server application invokes the
signalNewServiceRequirements method of the API to initiate
renegotiation of QoS parameters. This leads to sending a SIP
UPDATE request incorporating new service requirements. With
the assistance of QMOP AS, session end-points agree on a new
service configuration. This configuration is used for altering
resource reservation and enriching the established session with
media streaming (the “talking” face in Figure 7).

Figure 5. Session establishment (SE)

Figure 6. Signaling new service requirements (SNSR)

Figure 7. Media streaming added to the service

While streaming takes place, a decrease in authorized network
resources is emulated, leading to this change being signaled to the
end-points (DSAM scenario Change in resource availability).
Outcome of this operation is the adaptation of media content
delivery in the terms of a media codec change. The UML
sequence diagram, shown in Figure 8, depicts the signaling flow
that results in signaling new network resource availability. It is
assumed that QoS related network entities (PEP and PDP)
“know” which previously authorized network resources have
increased or decreased. This change at the bearer is further
signaled to the network control element (i.e. P-CSCF), which in
return initiates sending a SIP UPDATE request that informs
session end-points of a change in resource availability.
Negotiation between UE and NVR AS results in a new service
configuration. Server application uses the new configuration to
adapt delivery of service content. This evaluation scenario
involves emulating a decrease in available resources while
audio/video streaming is taking place. It results in applying a
“lower-quality” media codec to audio streaming (Figure 9).

Figure 8. Signaling new resource availability (SNRA)

Figure 9. Adapting media content due to a decrease in
resource availability

Afterwards, a new device configuration supporting “low-quality”
audio/video streaming is signaled by the client application. This
way, a change in client capabilities is simulated (DSAM scenario
Change in client profile). The UML sequence diagram that
models associated signaling flow is identical to the one for session
establishment (Figure 5). In the end, the session is terminated
upon user’s request and network resources are released (DSAM
scenario Session termination).

5.2 Experimental testbed
Evaluation measurements were conducted in a “live” experimental
network shown in Figure 10. Configuration of the associated PCs
hosting DSAM components is depicted in Table I.

Figure 10. Topology of the experimental testbed

Table I. Configuration of the testbed nodes

Node
Operating

system
Configuration

PC1 Windows XP
Pentium IV, CPU 1.6 GHz,

RAM 512 MB

PC2 Fedora Core
Pentium IV, CPU 1.6 GHz,

RAM 512 MB

PC3 Windows XP
Pentium IV, CPU 1.7 GHz,

RAM 1 GB

PC4 Windows XP
Pentium IV, CPU 2.4 GHz,

RAM 512 MB

PC5 Linux Kbuntu
Pentium IV, CPU 3.0 GHz,

RAM 1 GB

Measurements were performed for different emulated access
networks (parameters described in Table II, with loss ratio not
being essential and, therefore, being omitted) and for different
values of signaling load imposed at the AS that uses DSA API
(i.e. NVR AS). Access networks were emulated using the
NIST Net network emulator (http://www-x.antd.nist.gov/nistnet/).

In order to produce more realistic network conditions, signaling
load imposed by several users (UEs) simultaneously negotiating
QoS with the server (NVR AS) was introduced. The load was
generated by the UEs (PC5 in Figure 10) that were based on the
SIPp traffic generator (http://sipp.sourceforge.net/). SIPp is able
to establish and terminate SIP sessions, and was adjusted to make
calls, i.e. session attempts, based on the Session establishment
signaling flow. Imposed signaling load is expressed in call/s, and,
e.g., 5 call/s equals to 5 new session attempts each second. This
process of making calls with SIPp is repeated while the user
represented with the UE on PC1 (Figure 10) executes evaluation
scenario described in previous subsection.

For each combination of access network type and imposed
signaling load, we repeated the evaluation scenario for 15 times
and measured values of defined evaluation parameters. We will
focus on the Session establishment (SE), the Signaling new
service requirements (SNSR), and the Signaling new resource
availability (SNRA) signaling scenarios, because the Signaling
new client capabilities signaling flow is almost identical to
Session establishment. As the limited transmission characteristics
of the access network often constitute a performance bottleneck,
the goal was also to analyze their impact onto DSA API
performance, as well as the impact of increasing number of
simultaneous users.

Table II. Emulated access networks

Type Bandwidth Delay [ms]

GPRS (General Packet Radio
Service)

170 kbit/s 45

UMTS (Universal Mobile
Telecom. System)

384 kbit/s 45

WLAN (Wireless Local Area
Network)

1500 kbit/s 10

LAN (Local Area Network) 100 Mbit/s 10

5.3 Evaluation results
Average response time for each of the signaling scenarios is
depicted in relation to emulated access networks and imposed
signaling load by Figure 11, Figure 12, and Figure 13. Table III
shows the interval start and end time, as well as an overall size of
the profiles and service configurations (“session description data”)
being conveyed in a particular signaling scenario. It should be
noted that the amount of session data transferred in various
signaling scenarios differs significantly, with the maximum of
about 37 kilobytes being transferred during Session establishment.

Response time was measured at the “side” that is responsible for
invoking message exchange in a specific signaling scenario. For
SNSR, response time was measured at NVR AS, for SNRA at P-
CSCF, and for SE at UE.

Table III. Session description data and time interval per
signaling scenario

Signaling scenario
[Session data]

Interval start time Interval end time

Session establishment
[37,257 byte]

Sending the INVITE
by UE

Sending the ACK
by UE

Signaling new service
requirements
[3,472 byte]

Sending the
UPDATE by NVR

AS

Receipt of the 200
OK by NVR AS

Signaling new
resource availability

[3,250 byte]

Sending the first
UPDATE by P-

CSCF

Receipt of the last
200 OK by P-

CSCF

Session establishment time

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I r

es
po

n
se

 t
im

e
[s

]

LAN

WLAN

UMTS

GPRS

Figure 11. Average SE response time

Signaling new service requirements time

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I r

es
p

on
se

 t
im

e
[s

]

LAN

WLAN

UMTS

GPRS

Figure 12. Average SNSR response time

Signaling new resource availability time

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I r

es
p

on
se

 ti
m

e
[s

]

LAN

WLAN

UMTS

GPRS

Figure 13. Average SNRA response time

Results in Figures 11 - 13 show that response times of Session
establishment are about 4 to 11 times higher than those of
Signaling new service requirements and Signaling new resource
availability. This was expected, as they include exchange of a
higher number of signaling messages and a larger amount of
signaling information in general. Furthermore, when comparing
each of the scenarios across various access network types, it is
clear that response time is shorter for LAN and WLAN comparing
to UMTS and GPRS. This was expected as well, due to a lower
delay and a higher bandwidth. When taking into consideration
increase of imposed signaling load, it can be noticed that, in
general, response time grows slower for UMTS and GPRS than
for LAN and WLAN.

If comparing these results to evaluation criterion proposed in [4],
stating that session establishment should last no longer than 2-5 s
and renegotiation during the session no longer than 1 s, we can
see that DSA API is close to complying with the criterion. Further
analysis related to response time could be based upon the
evaluation metrics defined in [5].

Average signaling throughput is given separately for DSA client-
side API (Figure 14, only Session establishment is shown) and
DSA server-side API (Figure 15, Figure 16, and Figure 17).

If compared one to another in relation to Session establishment,
average signaling throughput of DSA server-side API is about 1.2
times higher than that of DSA client-side API. This is the result of
about 37 kilobytes of session description data and a similar
overall amount of signaling information being traversed through
the server-side in a proportionally shorter period of time.
Similarly to response time, signaling throughput rises as the
bandwidth and the delay of access network improve (from GPRS
to LAN). It is important to note that response times and signaling
throughputs directly depend on our particular implementation
performance, thus leaving room for improvement. Signaling
throughput generally decreases when imposed signaling load
increases (e.g., Figure 14). Taking into consideration this
increase, it can be noticed that, in general, throughput decreases
slower for UMTS and GPRS than for LAN and WLAN.

Average signaling header size for each of the signaling scenarios
is depicted by Table IV. Values in the table represent only the SIP
header size. They are related to the fields that form SIP header.
Utilization of most fields in DSAM laboratory implementation is

Session establishment throughput of
DSA API / client side

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I t

h
ro

u
gh

p
ut

 [
kB

/s
]

LAN

WLAN

UMTS

GPRS

Figure 14. Average SE signaling throughput (DSA Client API)

Session establishment throughput of
DSA API / server side

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I t

h
ro

ug
hp

ut
 [

kB
/s

]

LAN

WLAN

UMTS

GPRS

Figure 15. Average SE signaling throughput
(DSA Server API)

Signaling new service requirements
throughput of DSA API / server side

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I t

hr
ou

gh
pu

t [
kB

/s
]

LAN

WLAN

UMTS

GPRS

Figure 16. Average SNSR signaling throughput
(DSA Server API)

Signaling new resource availability
throughput of DSA API / server side

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I t

hr
ou

g
hp

ut
 [k

B
/s

]

LAN

WLAN

UMTS

GPRS

Figure 17. Average SNRA signaling throughput
(DSA Server API)

a result of how the SIP protocol is used in IMS (and not a result
of DSAM functionality).

Table IV. Average signaling header size

Signaling scenario
Average header size

[byte]

Session establishment 750.76

Signaling new service requirements 769.76

Signaling new resource availability 789.76

Results related to CPU load are highlighted with average CPU
load for Session establishment, given separately for DSA client-
side API (Figure 18) and DSA server-side API (Figure 19).

Average CPU load of DSA client-side API increases as the access
network characteristics improve in terms of bandwidth increase
and delay decrease. This can be explained by the same amount of
signaling information traversing the client-side in a shorter period
of time (when changing from GPRS to LAN, Figure 11), thus
causing a higher “instantaneous” CPU load. On the other hand,
CPU load that is induced by DSA Client API decreases as
imposed signaling load increases. This is due to the equal amount
of signaling information traversing the client-side in a longer
period of time, as a result of an increased processing time of the
server side. Average CPU load of DSA server-side API
(Figure 19), on the contrary, increases almost exponentially as
imposed signaling load increases, showing poor scalability. It is,
however, interesting to notice that the change of access network
provides no effect on CPU load of DSA Server API. CPU load of
DSA Server API for Signaling new service requirements and
Signaling new resource availability provided similar results.

Average memory consumption of DSA API is depicted by
Table V and Table VI (the latter showing memory consumption of
DSA Server API for Session establishment, in relation to imposed
signaling load). Memory consumption of DSA Client API
(Table V) is independent of the access network and imposed
signaling load, and totals about 27 to 30 megabytes. Average
memory consumption of DSA Server API increases with the
increase of imposed signaling load, but also shows independence
of the access network type.

Initialization time of DSA API is given in Table VII. It is the
amount of time required to initiate DSA API components at the
server-side and the client-side.

Session establishment CPU load of DSA
API / client side

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I C

P
U

 lo
ad

 [
%

]

LAN

WLAN

UMTS

GPRS

Figure 18. Average SE CPU load (DSA Client API)

Session establishment CPU load of DSA
API / server side

6.0

10.0

14.0

18.0

22.0

26.0

30.0

34.0

38.0

42.0

0 1 2.5 5

Signaling load [call/s]

D
S

A
 A

P
I C

P
U

 lo
ad

 [
%

]

LAN

WLAN

UMTS

GPRS

Figure 19. Average SE CPU load (DSA Server API)

Table V. Average memory consumption (DSA Client API)

Signaling scenario
Memory consumption

[Mbyte]

Session establishment 27.43

Signaling new service requirements 30.02

Signaling new resource availability 29.79

Table VI. Average SE memory consumption (DSA Server API)

Imposed signaling load
[call/s]

Memory consumption
[Mbyte]

0 23.2

1 33.12

2.5 49.94

5 83.50

Table VII. Initialization time

DSA Client API [ms] DSA Server API [ms]

399.31 720.26

6. SUMMARY AND CONCLUSIONS
This paper presents an experimental evaluation of DSA API,
which provides an advanced QoS signaling functionality to
network-aware IP multimedia applications in NGN. The
evaluation is based on the six proposed parameters, namely, the
Response time, the Signaling throughput, the Signaling header
size, the CPU load, the Memory consumption, and the
Initialization time, which could help estimate the impact of the
API on the application execution. An experimental testbed using a
virtual 3D environment with audio/video streaming components,
called Inheritance Chase, was used to perform measurements. The
proposed evaluation parameters have been related to various
emulated access networks, from 2G/3G to WLAN and LAN, as

well as to different values of imposed signaling load that created
multi-user environment.

Comparing the response time results to evaluation criterion
proposed in [4] shows that DSA API introduces response delay
that is close to comply with the criterion. Signaling load imposed
by the API could prove to be significant, especially for access
networks with lower transmission capacity (such as 2G, or even
3G), if we compare the throughput with bitrates of media
standards such as MPEG-4 [15]. Every signaling protocol
introduces overhead in the form of control header required to
convey “useful” information. Although signaling header size of
DSA API is far from being negligible, it is still considerably
smaller than the size of message bodies (session description data)
in the signaling scenarios. CPU load and memory consumption
imposed by the API appear to be “significant”, especially when
number of simultaneous signaling and negotiation sessions
increases. However, it should be emphasized that all evaluation
results are application-specific and also depend on our particular
DSAM implementation performance, leaving some room for its
enhancement.

Future work could focus on performing measurements for various
prototype applications and comparing results among them, as well
as addressing scalability issues in more complex situations (i.e.
with larger number of simultaneous users).

7. ACKNOWLEDGMENTS
The authors acknowledge the support of research projects
“Content Delivery and Mobility of Users and Services in New
Generation Networks” (036-0362027-1639), funded by the
Ministry of Science, Education and Sports of the Republic of
Croatia, and “Future Advanced Multimedia Service Enablers” of
Ericsson Nikola Tesla, Croatia.

8. REFERENCES
[1] Cao, J., Zhang, D., McNeill, K. M., and Nunamaker, Jr., J. F.

2004. An Overview of Network-Aware Applications for
Mobile Multimedia Delivery. In Proceedings of the 37th
Annual Hawaii International Conference on System Sciences
(Big Island, Hawaii, USA, January, 2004). 292-301.

[2] Dobrijevic, O., Mosmondor, M., and Matijasevic, M. 2007.
Design of a QoS Signaling API for Advanced Multimedia
Applications in NGN. In Proceedings of the 4th International
Conference on Information Technology: New Generations
(Las Vegas, Nevada, USA, April, 2007). 56-64.

[3] Fu, X., Schulzrinne, H., Tschofenig, H., Dickmann, C., and
Hogrefe, D. 2006. Overhead and Performance Study of the
General Internet Signaling Transport (GIST) Protocol. In
Proceedings of the 25th IEEE International Conference on
Computer Communications (Barcelona, Spain, April, 2006).
01-12.

[4] Guenkova-Luy, T., Kassler, A. J., and Mandato, D. 2004.
End-to-End Quality-of-Service Coordination for Mobile
Multimedia Applications. IEEE J. Sel. Area. Comm. 22, 5
(June 2004), 889-903.

[5] Malas, D. 2008. SIP End-to-End Performance Metrics (draft-
ietf-pmol-sip-perf-metrics-01.txt). IETF Work in progress
(June, 2008).

[6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and Schooler, E. 2002.
SIP: Session Initiation Protocol. IETF RFC 3261 (June,
2002).

[7] Skorin-Kapov, L. and Matijasevic, M. 2005. Dynamic QoS
Negotiation and Adaptation for Networked Virtual Reality
Services. In Proceedings of the 6th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia
Networks (Taormina, Italy, June, 2005). 344-351.

[8] Skorin-Kapov, L., Mosmondor, M., Dobrijevic, O., and
Matijasevic, M. 2007. Application-Level QoS Negotiation
and Signaling for Advanced Multimedia Services in the IMS.
IEEE Commun. Mag. 45, 7 (July 2007), 108-116.

[9] Zeadally, S., Zhang, L., Zhu, Z., and Lu, J. 2004. Network
application programming interfaces (APIs) performance on
commodity operating systems. Inform. Software Tech. 46, 6
(May 2004), 397-402.

[10] –, 2004. General Overview of NGN. ITU-T
Recommendation Y.2001.

[11] –, 2006. IP Multimedia Subsystem (IMS); Stage 2 (Release
5). 3GPP TS 23.228.

[12] –, 2006. IP Multimedia (IM) session handling; IM call
model; Stage 2 (Release 6). 3GPP TS 23.218.

[13] –, 2006. Signalling flows for the IP multimedia call control
based on Session Initiation Protocol (SIP) and Session
Description Protocol (SDP); Stage 3 (Release 5). 3GPP TS
24.228.

[14] JSR 281: IMS Services API
[Online: http://www.jcp.org/en/jsr/detail?id=281]

[15] MPEG Home Page
[Online: http://www.chiariglione.org/mpeg/]

[16] NIST, Project IP telephony / VoIP
[Online: http://snad.ncsl.nist.gov/proj/iptel/]

[17] SAX [Online: http://www.saxproject.org/]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

