
Transparent Multi-Client Access and Dynamic
Content Generation

Hrvoje Komerički, Damjan Lončarević and Tomislav Fitz
Department of Telecommunications

Faculty of Electrical Engineering
University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia
{hrvoje.komericki, damjan.loncarevic, tomislav.fitz}@fer.hr

Abstract—The proliferation of mobile devices has created
the need for delivery of content tailored to capabilities of the
device used. This content adaptation has to be invisible to
the end user. Our goal was to find a solution that would
enable this adaptation for a hierarchical data structure that
is changing very frequently. This means the content has to
be created dynamically. In this paper we propose a solution
for dynamic content generation and transparent multi-client
access. Clients send requests that contain parameters, and
headers that describe them and the content they want to
receive. The solution for content generation comprises: a
request handler that processes the request and parameters
so that content based on them can be generated, a data
service that delivers the data needed for content generation,
a content transformer that transforms provided data to the
format that is expected by the client in the response, and a
response generator that generates a response that contains
the requested content. Transparent access is provided using
the User-Agent header field sent in the client request. We
explain the architecture of solution and the general content
generation process. Implementation of the proposed solution
is demonstrated in a case study involving visualization of
GRID monitoring data.

I. INTRODUCTION
There has been a lot of recent work directed towards

presenting content on mobile and hand-held devices. A
software architecture to support computing on hand-held
devices has been proposed in [1]. An overview of current
technologies and standardization efforts for enabling
device-independent Web applications may be found in [2].
One of the main technologies for adapting standard
Hypertext Markup Language (HTML) content is
transcoding [3], which unfortunately has known
limitations when it comes to more complex structures. A
recent approach to transcoding Web pages for display on
mobile devices attempts to take into account semantics as
well [4].

In this paper we present a solution for transparent
access to dynamically generated content. It was our goal
to make possible for end users to access the content using
different devices they request the same way, independent
of the device they are using. The content is generated from
data that are extracted from a database. These data are
changing frequently so content cannot be generated
statically as in previous solutions. We had to find a
solution that would enable dynamic content generation.
First Java Server Pages (JSP) seemed to be a good

solution for dynamic content generation, but we found it
more elegant and faster to combine content generation
with transparent access. Our solution uses Apache Cocoon
Servlet Technology, an Extensible Markup Language
(XML) [6] publishing framework that uses XML and
Extensible Stylesheet Language Transformations (XSLT)
[7] technologies for server applications, as described in
Section II. The description of the content generation
process and general architecture of our solution is
described in Section III. Our implementation, which is
described in Section IV, enables devices with different
browsers to access content that is adapted to their browser
type. The data is received from a data server in the form of
an XML document and then browser-adapted content is
generated using XSLT. Our implementation was tested
using the Sony Ericsson P800 phone, the iPAQ pocket PC
devices and Deckit 1.2.3 WAP emulator with the data
provided by MonALISA system [8], a distributed
monitoring system used in this case to monitor AliEn Grid
sites (http://alien.cern.ch/). The results are described in
Section V. In Section VI the conclusion and the directions
for future work are given.

II. TECHNOLOGY
We used Apache Cocoon Servlet Technology

(http://cocoon.apache.org), an XML publishing
framework that uses XML and XSLT technologies for
server applications. XML is a very flexible markup
language designed to describe data structure and
semantics. An XSLT stylesheet specifies the presentation
of a class of XML documents by describing how an
instance of the class is transformed into an XML
document that uses a formatting vocabulary, such as
HTML or WML. Cocoon is designed for performance and
scalability around pipelined SAX processing and offers a
flexible environment based on a separation of concerns
between content, logic, and style. File transformation in
Cocoon is based upon a pipeline architecture as shown
Figure 1.

Figure 1. Cocoon pipeline

Igor Sebo
0-7803-8271-4/04/$20.00 ©2004 IEEE 641

Igor Sebo
IEEE MELECON 2004, May 12-15, 2004, Dubrovnik, Croatia

 An XML document is pushed through a pipeline.
Every pipeline begins with a generator, continues with
zero or more transformers, and ends with a serializer. We
will explain the components of the pipeline in more detail.

The Generator is the starting point for the pipeline. It is
responsible for delivering SAX events down the pipeline.
The simplest Generator is the FileGenerator: it takes a
local XML document, parses it, and sends the SAX events
down the pipeline. The Generator is constructed to be
independent of the concept "file".

A Transformer can be compared to an XSL: it gets an
XML document (or SAX events), and generates another
XML document (or SAX events). The simplest
Transformer is the XalanTransformer: it applies an XSL
to the SAX events it receives.

A Serializer is responsible for transforming SAX events
to a presentation format. For actors looking at the back of
the pipeline, it looks like a static file is delivered. A
browser can receive HTML, and will not be able to tell the
difference from a static file on the file system of the
server. There are Serializers for generating HTML, XML,
PDF, VRML, X3D and WAP. The simplest Serializer is
the XMLSerializer: it receives the SAX events from up
the pipeline, and returns a "human-readable" XML file.

Besides using the various components, we can use
matchers, and selectors to choose a specific pipeline
processing. The pipelines are defined in Sitemap. It
contains configuration information for a Cocoon engine:
list of matchers, generators, transformers, readers,
serializers, selectors and processing pipelines with match
patterns. Sitemap is an XML file corresponding to a
sitemap Data Type Description (DTD). It can be edited to
add new elements. Sitemap is generated into a program
and is compiled into an executable unit.

III. SOLUTION
Figure 2 shows the basic physical architecture of the

system. Clients access the server through the network and
request content that is generated dynamically at the origin
server. Data that is used for content generation is extracted
(from a database) by another server and is sent to the
origin server in a common data format. Generated content
is adjusted to parameters and headers that are sent in the
client’s requests and is sent back to the clients. It is
important that the users from different clients can access
the content transparently. This means that the user
requests content in the same way no matter what kind of
device he/she uses and has no knowledge that the content
is dynamically generated and adjusted to parameters sent
by the client.

Figure 2. System architecture

The content generation process is shown in Figure 3.
The client sends the request, which contains parameters,
and headers that describe it and the content it wants to
receive. The Request Handler processes the request and
parameters so that content matching them can be
generated. Data for content generation is requested from
the Data Service. It has the task of extracting and
adjusting data (from a database) according to the sent
parameters. Also it formats the data to the format used by
the Content Transformer.

Content
TransformerClient Request

Handler
Response
Generator

Data
Service

Figure 3. Content generation process

The provided data is then transformed in the Content
Transformer to the format that is expected by the client in
the response. The Response Generator generates the
response that contains the requested content and it is sent
back to the client. The client receives the generated
content and it can be displayed to the user. The
architecture described in Figure 3 is logical. Usually the
Request Handler, the Content Generator, and the response
Generator are physically located on the origin server. The
Data Service is usually located on another server that has
access to a database.

IV. IMPLEMENTATION
Users can access the content from different devices.

User agents (browsers) from different devices request the
content from the server sending an HTTP request with the
User-Agent header field set as shown in Figure 4. Cocoon
identifies the type of browser through the value of the
User-Agent header field. The browser type is used to
select the specific transformer for the used browser in the
pipeline. After serialization a response is sent back to the
client.

Figure 4. HTTP header

The initial process of user identification may be
extended in the future with the client profile specified
based on Composite Capabilities / Preference Profile
(CC/PP) proposed by W3C
(http://www.w3.org/TR/CCPP-struct-vocab/) [9], or by
using Session Initiation Protocol (SIP) extended with
Session Description Protocol (SDP). CC/PP is a client
profile data format used for describing device capabilities
and user preferences based on the Resource Description
Framework (RDF).

The server used in our implementation was Intel
Pentium 4 (1.6GHz). It had Apache Http Web Server

Igor Sebo
 642

2.0.47 (http://httpd.apache.org/docs-2.0/) with Tomcat
Server 4.1.27-LE-jdk14 (http://jakarta.apache.org/tomcat/)
and Cocoon Servlet Technology 2.0.4 installed. Apache
Tomcat uses Java jdk 1.4.2. (http://java.sun.com/) All the
requests are sent to the Apache Http Server (using the
same URL). Then it redirects them to Apache Tomcat
Server according to the device used. The processing is
implemented using Apache Cocoon Servlet Technology.

Clients used:
• Client 1: iPAQ 3870 pocket PC with Intel Strong

ARM SA 1110 (206 MHz) processor, Windows
Pocket PC (CE 3.0) operating system and IE 3.02
Pocket Internet Explorer. It connects to the server
over WLAN (11 Mbps).

• Client 2: Sony Ericsson P800 phone with the
ARM 9 (156 MHz) processor, the Symbian 7.0
operating system and Opera 6.0 / SE R101
Browser for the P800/802 installed. The
connection to the server is established through
GPRS CS-2 (53.6 kbps).

• Client 3: Deck-It 1.2.3 WAP emulator
(http://www.pyweb.com/tools).

• Client 4: Sony Ericsson P800 phone with the
ARM 9 (156 MHz) processor, the Symbian 7.0
operating system and his built in browser. The
connection to the server is established through
GPRS CS-2 (53.6 kbps).

Figure 5. Dynamic content generation

In Figure 5 the process of creating content dynamically
in case of the iPAQ pocket PC is shown. The user requests
the content for GlobalClient.html. This name is then
matched with preset patterns from the sitemap that
contains the Cocoon pipeline. The part of the pipeline
matching the requested name uses the appropriate XML
file and XSL transformation file to generate the content.
The content is then serialized and sent back to the client.

V. CASE STUDY: VISUALIZATON OF GRID
MONITORING DATA

GRID monitoring data is interesting to visualize
because of it hierarchical structure and variation of data
values. The main data repository for our solution was
provided by the MonALISA system [8]. The MonALISA
(Monitoring Agents in A Large Integrated Services
Architecture) system provides a distributed monitoring
service in this case used to monitor AliEn Grid sites

(http://alien.cern.ch/). Grid computing has been described
as s form of distributed computing that involves
coordinating and sharing computing, application, data,
storage, or network resources across dynamic and
geographically dispersed organizations [5].

Variation of data values indicates the need for dynamic
content generation, in our case .html or .wml pages that
are adapted for particular devices and browsers. Our goal
was to implement a Web based service that would provide
a user with a view of the monitored network hierarchy, in
addition to the values of various monitoring parameters
for different Grid sites. Sites are organized into a
hierarchy of “farms” and “clusters”, referring to the
geographical and/or logical grouping of nodes into virtual
computing systems.

Users access the service by entering a unique URL,
independent of the device being used. The main page
generated dynamically afterwards shows the configuration
of farms and clusters in the form of a table. User can
choose an interval in which he wishes to see the
parameters of clusters and nodes. The other pages are
accessed through links from the main page. The links have
parameterized URLs that are processed in a similar way as
the main page in Cocoon but are matching different names
in the pipeline. The parameters passed through the URL
are used to request XML files from a service that returns
the XML file according to those parameters. The
parameter values returned by the service are actual values
fetched from a MonALISA database. The three cases of
access to the data from three kinds of devices will be
shown in the rest of this chapter.

A. iPAQ
The main page for the iPAQ pocket PC (Figure 6)

contains the table in which all the farms, clusters and
number of nodes in each cluster that are available are
shown. On the bottom of the main page there is a form,
attached to the script made in JavaScript language, in
which the user can choose an interval for which he wants
to get the data. Names of farms and clusters are also links
to pages with farm configuration or cluster configuration.
The parameter values in those pages are given for the
same interval as chosen on the main page. If the user
wants to view how parameter values change through the
period selected he can click on the parameter name to get
the graph as shown in Figure 7. The mean values for the
according periods are shown on top of the graph.

Figure 6. Main page displayed on iPAQ

Igor Sebo
 643

Figure 7. Histogram displayed on iPAQ

B. P800
The content for the P800 phone is accessed the same

way as for the iPAQ but the size of the visualization is
adjusted to the smaller screen of the P800. As described in
section V.A for iPAQ, the main page for the P800 also
contains the table in which all the farms, clusters and
number of nodes in each cluster that is available are
shown. Form attached to the script made in JavaScript
language was used to allow the user interval selection.
This form is placed on the bottom of the main page.
Names of farms and clusters are also linked to pages with
farm configuration or cluster configuration. The parameter
values that are shown in those pages are given for the
same interval as chosen on the main page. If the user
wants to view how parameter values change through the
period selected he can click on the parameter name to get
the graph. The mean values for the according periods are
shown on top of the graph (Figure 8).

Figure 8. Histogram displayed on P800

C. WAP
In Figure 9 you can see the main page for WAP enabled

phones. The user gets the names of all the farms available.
Then he can choose the farm he is interested in by
selecting the farm name. After farm selection he gets the
card containing the list of clusters for that farm and the
number of nodes for each cluster as shown in Figure 9.
User also can request more details for the chosen farm or
he can return to the previous card by pressing the Back
button. If more details are chosen the user gets the WML
page with parameter names and mean parameter values
for all the clusters in the chosen farm. Finally the user gets

the list of nodes and available parameter values for the
selected cluster.

Figure 9. a) Main page b) Cluster configuration

 Displayed on WAP emulator

VI. CONCLUSION
We made it possible to access the same content from

different devices and to dynamically adapt the
visualization of that content to the characteristics of the
certain device. Apache Cocoon Servlet Technology
enabled us to build our solution in a simple and extensible
way. Our implementation supports adapted visualization
in the form of graphs and tables as well as transparent
access for the iPAQ pocket PC, P800 and WAP enabled
mobile phones. The implementation was successfully
tested using Grid monitoring data, but it also can be easily
adapted for visualization of any kind of hierarchical data
structures.

In future work identification of user’s terminal and
network can be extended with CC/PP or SIP and SDP.

ACKNOWLEDGMENT
This work resulted as a part of FER/ETK Summer

Camp 2003 Workshop.

REFERENCES
[1] N. Medvidovic, M. Mikic-Rakic, N. R. Mehta, and S. Malek,

“Software Architectural Support for Handheld Computing”, IEEE
Computer 36, 9, pp. 66–73, 2003.

[2] M. Butler, F. Giannetti, R. Gimson and T. Wiley, “Device
Independence and the Web”, IEEE Intenet Computing 6, 5, pp.
81–86., 2002.

[3] K. H. Britton, R. Case, A. Citron, R. Floyd, Y. Li, C. Seekamp, B.
Topol, and K. Tracey, “Transcoding: Extending e-business to new
environments”, IBM Systems Journal 40, 1, pp. 153–178, 2001.

[4] Y. Hwang, J. Kim, and E. Seo, “Structure Aware Web
Transcoding for Mobile Devices”, IEEE Internet Computing 7, 5,
pp. 214–221, 2003.

[5] I. Fosrer and C. Kesselman, eds., The Grid: Blueprint for a Future
Computing Infrastructure, Morgan Kaufmann, 1999.

[6] Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation 6 October 2000 [On-line:
http://www.w3.org/TR/2000/REC-xml-20001006]

[7] XSL Transformations (XSLT) Ver. 1.0, W3C Recommendation
16 November 1999 [On-line: http://www.w3.org/TR/1999/REC-
xslt-19991116]

[8] H.B. Newman, I.C. Legrand, P.Galvez, R. Voicu, C. Cirstoiu,
MonALISA: “A Distributed Monitoring Service Architecture”,
Proceedings of 2003 Conference for Computing in High Energy
NuclearPhysics, 8 pp., La Jola, California, 2003.

[9] Composite Capabilities / Preference Profiles: Requirements and
Architecture, W3C Working Draft, July 2000 [On-line:
http://www.w3.org/TR/CCPP-struct-vocab/]

Igor Sebo
 644

	Main Menu
	Table of Contents
	Author Index
	Introductory Pages

	Search CD-ROM
	Next Search Result
	Print

