
Elektrotehniški vestnik XX(Y): 1–6, YEAR
Electrotechnical Review, Ljubljana, Slovenija

Monitoring Data Visualization and Agent-based
Software Management for the Grid

Maja Matija ševíc and Gordan Jězić

University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb, Croatia

Abstract. In this paper, we present our results in the areas of monitoring data visualization and software
management for the Grid. We describe the concept of a Multiplatform Universal Visualization Architecture
(MUVA) and its application to visualization of Grid monitoring data on multiple platforms. The key features of the
proposed approach are independence of data acquisition andthe thin adaptation “layer” for the platform on which
the data is visualized. The presented case study demonstrates the visualization of Grid monitoring data on multiple
client platforms. We also present a method, named Remote Maintenance Shell (RMS), developed for software
management in large distributed environments. The proposed method is based on remote operations performed by
cooperative mobile agents. A case study elaborates software migration and deployment in the Grid.

Key words: Grid, visualization, monitoring, mobile agent, software management

1 Introduction

Grid technologies have been described as supporting the
sharing and coordinated use of diverse resources in dis-
tributedvirtual organizations[6]. Due to its global size,
as well as many geographically and organizationally dis-
tributed components, Grid is inherently difficult to mon-
itor and manage. Tools and methods for addressing such
tasks are needed, and they present an open area of re-
search. In this paper, we describe our two contributions,
one for visualizing Grid monitoring data, and the other
for Grid software management. The paper is organized in
two sections, addressing the respective contributions.

To date, a number of Grid monitoring systems has
been developed to enable monitoring and displaying Grid
topology, its components, and their parameters such as,
for example, resource availability, load distribution, net-
work input/output, and task performance [1][2][18]. In
addition to data collection, most current systems also in-
clude a means for Web-based visualization of the moni-
toring information gathered by the system. With recent
advances in multimedia and networking capabilities of
user terminals, there is a strong trend towards visually
more appealing and interactive user interfaces. Visualiza-
tions are becoming multi-modal and multi-platform, i.e.
they may combine various media such as text, hypertext,
pictures, multi-dimensional graphics, audio, and video,
on a wide range of client (end-user) platforms, from PCs
to new-generation mobile phones. To address the prob-
lem of data visualization on multiple client platforms, we

Received 26 December 2004
Accepted Day Month 2005

propose the Multi-platform Universal Visualization Ar-
chitecture (MUVA) [20], and apply it to Grid monitor-
ing data. The data source used by our prototype was a
central data repository provided by the MonALISA mon-
itoring software (http://monalisa.cacr.caltech.edu/) [18],
however, the described architecture is independent of data
source, and could be tailored to work with a different data-
base or data source by use of Web services. We also
believe MUVA to be suitable for integrated monitoring
systems [13], where data coming from different sources
are presented through a common visual interface. The
prototype service we implemented provides an interface
for users to view Grid configuration and monitoring data,
such as load, data rates, and memory on different plat-
forms. In the first part of this paper we describe the
MUVA architecture, and show its implementation and ap-
plication onto Grid monitoring data visualization.

Software management, as one of the phases in the
service provisioning process, involves operations such as
software deployment, configuration, control, upgrading,
provisioning, monitoring, accounting, billing, and self-
management [14]. Desired capabilities of a software man-
agement system to be deployed in a large distributed en-
vironment, such as Grid, include [7][9][10][17]:

• management from a remote location

• management of multiple systems from a centralized
location

• simultaneous management of multiple systems with-
out handling each of them individually (easy config-
uration copying)



2 Matijaševíc, Jězić

• software deployment to the remote system (migra-
tion and installation)

• software maintenance on the remote system (updat-
ing with a more recent version)

• software execution control (starting and stopping at
will), and

• software tracing and testing on the actual target sys-
tem.

To address the requirements of such a system, we pro-
pose an agent-based system, named Remote Maintenance
Shell (RMS) [11][12]. RMS employs mobile software
agents to perform Grid software management, while au-
tonomously migrating from node to node during execu-
tion [5][3]. RMS provides the solutions for both basic (in-
stallation, starting and stopping) and advanced software
management operations (testing and tracing), as well as
performing them remotely. In the second part of the pa-
per, we describe the RMS concept and implementation,
and demonstrate its application in a case study based on
the MonALISA monitoring software.

2 Multiplatform universal visualization
architecture

The architecture we apply to visualization of Grid moni-
toring data is the Multiplatform Universal Visualization
Architecture (MUVA) [20]. MUVA provides universal
visual access to data independent of the client platform,
while automatically adapting delivery modes to the par-
ticular platform. Fig. 1 presents the concept of the MUVA
architecture.

Figure 1. The concept of MUVA

MUVA comprises four components:

• Visualization tools, responsible for one particular
mode of visualization (tool), e.g. a 3D structure of
an input hierarchy, a list, a table, a bar-chart, a pie-
chart, a tree, a graph, etc.

• Platform driversfor each supported platform, which
render (visualize) formatted data received from visu-
alization tools on the screen, and enable user interac-
tion.

• Application interfaces, responsible for retrieving
data from a data source via a standard application
specific API, and converting data into Extensible
Markup Language (XML) format.

• Service logic, which encompasses modules that pro-
vide the intelligence needed to connect components
of the architecture in order to enable universal visual
access and delivery mode adaptation.

MUVA has been designed as a flexible and modular ar-
chitecture comprised of a collection of software modules.
Key parts of the architecture are platform-independent
“standardized” visualization tools, meaning that each tool
has a predefined structure of data parameters and requests
to be fed to it through its API. Visualization tools are sep-
arated from actual client devices by platform drivers, de-
signed to adapt the data delivery mode to specific plat-
forms. On the input side, actual data collection is sep-
arated from the abstract visualization tools. This allows
for any data source to be utilized simply by developing
thin application interfaces. The result is quick adaptabil-
ity to various specific application domains. The service
logic layer provides the necessary intelligence for coordi-
nating application interfaces, visualization tools, and plat-
form drivers, based on the identified client platform capa-
bilities and user request.

To illustrate the typical usage scenario, we start from
the incoming client request. Upon receiving a client ser-
vice request, the client’s preferences and platform capa-
bilities are identified. One method of identification is
based on W3C Composite Capabilities / Preference Pro-
file (CC/PP) Recommendation for device independence
[19], a proposed industry standard for describing deliv-
ery context. The client profile data format is based on the
Resource Description Framework (RDF). A client profile
may either be sent directly as an extension to an HTTP re-
quest, or referenced from a remote location using a URL.
Client identification, based on a set of generic profile pa-
rameters, allows for on-the-fly identification of the capa-
bilities of an increasing number of end-user devices. The
service logic retrieves raw data independently of the plat-
form capabilities through invocation of application inter-
face modules. The raw data are then sent to appropriate
visualization tool(s). Formatted data received as the out-
put from visualization tool are then delivered to the plat-
form driver. The service logic layer provides the logic



Monitoring Data Visualization and Agent-based Software Management for the Grid 3

necessary to select adequate visualization tools and plat-
form drivers to produce the final content, adapted to the
given client platform. In order to demonstrate the pro-
posed approach in a real world scenario, a prototype Web
based service was implemented, which provides multi-
platform visual access to Grid monitoring data. Service
implementation helps to demonstrate the separation be-
tween application interfaces, visualization tools, platform
drivers, and service logic components, as well as the main
communication channels involved.

2.1 Grid monitoring data visualization

The service implemented in this work provides an inter-
face for users to view the logical structure of the Grid,
combined with monitoring data, such as load, data rates,
and memory on different platforms. In the Grid, the mon-
itored nodes are arranged in a hierarchical manner into
farms andclusters, referring to the geographical and/or
logical grouping ofnodesinto virtual computing systems.
As mentioned earlier, the data source used was a cen-
tral data repository provided by the MonALISA system,
which provides a distributed monitoring service and was
in this case used to monitor hundreds of AliEn Grid sites
(http://alien.cern.ch/). Users access the service by enter-
ing a unique URL, which is independent of the client de-
vice being used. Requested data, which is then retrieved
from a central repository and described using XML, is dy-
namically converted to a format suitable for displaying on
the client device. The different formats that were used in-
clude Virtual Reality Modeling Language (VRML), Hy-
pertext Markup Language (HTML), and Wireless Markup
Language (WML).

The service implementation was tested on several
platforms: a desktop PC, a handheld PC, a Java-enabled
PDA-type mobile phone, and a WAP-enabled mobile
phone [20]. Where possible, the monitored network con-
figuration (or a particular sub-configuration) was visual-
ized using the 3D Cone Tree technique [19]. We consider
applying other methods of visualization for other Grid
properties as well [15]. Cone Tree is an interactive vi-
sualization technique suitable for hierarchical structures.
The root of the network hierarchy is located at the tip of
a transparent cone. When a level in the hierarchy is ex-
panded (on user click), its children nodes are distributed at
equal distances around the base of a cone. The user inter-
face is enhanced by enabling interactive viewing, zoom-
ing, expanding and collapsing of parts of the structure.

The MUVA components are implemented as follows.
Service logic is implemented using Apache Web server
2.0.47. and Apache Tomcat Server 4.1.27-LE-jdk14. Ap-
plication interfaces use XML as an interchange format.
The interface towards the actual data repository storing
monitoring data collected by the MonALISA system is
based on Web Services technology. Connectivity to the

Web Service was provided using Apache Axis 1.1 open
source solution, the follow up on the Apache SOAP
project. The stub code for the Web Service was gener-
ated by Axis’ WSDL2Java utility and modified accord-
ing to our needs. The Web Service returns values in the
form of Java beans, that are then transformed to XML
format. Visualization tools include various visualization
techniques, including text, 2D graphics, and 3D graph-
ics. Platform drivers were implemented for each platform
(PC, handheld PC, and mobile phones with and without
Java support). For 3D content, Shout3D applet and Cor-
tona VRML plug-in were used for rendering on a PC, and
Pocket Cortona ad Shout3d were used for rendering on
the iPAQ PDA. For rendering on mobile phone with Java
support (Sony Ericsson P800), we implemented a C++
application to dynamically generate a 3D scene by using
the DieselEngine SDK 1.3, Symbian UIQ v7.0 SDK, and
Metrowerks CodeWarrior for Symbian OS [16]. XSLT
files were implemented to further adapt content for dis-
play on a particular device, including the creation of
HTML and WML format for display on a WAP-enabled
mobile phone. A view of the PC client display is shown
in Fig. 2. Upon initial loading, the 3D view window (in

Figure 2. Visualization on a PC client

the middle) renders the 3D scene displaying the hierar-
chy of Grid farms, clusters and nodes. The Parameters
window enables a user to choose a monitoring parameter.
The Histogram window enables a user to choose between
displaying real-time data and history data. Once the user
has chosen a parameter and histogram button, clicking on
the “Execute!” button will initiate the coloring of tree
nodes and writing text to the output window. Parameter
values are retrieved for each node, and coloring is based
on the range that the value fits into (here: high, medium,
low). For example, in Fig. 2 the selected parameter is
one of those describing the load (“Load5”); so the over-
loaded clusters are colored red, medium loaded clusters
are colored yellow, while underloaded clusters are col-
ored green. The upper and/or lower threshold values for



4 Matijaševíc, Jězić

each range are displayed in the Legend window. Fig. 3
shows a 3D view window and a tabular view on an IPAQ
handheld PC. It may be noticed that the same data are now

Figure 3. Visualization on a handheld PC client

represented by using a combination of HTML pages and
simpler 3D Cone trees with only subsets of nodes to adapt
the view to the small display size and lower processing
capabilities.

3 Remote Maintenance Shell

RMS is a distributed system comprising two main compo-
nents: the clientRMS Consoleand the serverRMS Main-
tenance Environment(RMS ME), as shown in Fig. 4. The
RMS Console offers a GUI through which the administra-
tor may perform management actions on a remote system
(RS). The computer on which RMS Console is installed
and runs on will be referred to as themanagement sta-
tion, as it represents the central location for performing
the maintenance. The RMS ME, also referred to asRMS
Core, is the server part of RMS and it has to be previ-
ously installed on managed RSs (in this case Grid nodes)
in order for them to be managed by the RMS. All RMS
operations are executed by mobile agents, which migrate
autonomously between the network nodes during execu-
tion. Once the RMS user (i.e., the administrator of the
managed system) defines operations to be performed at
RS(s), the operations are assigned to one or more mo-
bile agents, which then migrate to target RS(s) and per-
form the operations. We implemented both parts of RMS
(the RMS ME and the RMS Console) in Java and we use
Grasshopper (http://www.grasshopper.de) as the underly-
ing agent platform.

The reason to apply mobile agents in RMS is to
achieve decentralized operation execution and increased
asynchrony of operation, as well as to reduce sensibility
of RMS to network latency, and to facilitate flexible con-

figuration of remote testing. In order for a specific soft-
ware to be used with RMS, the software itself does not
need to be modified; instead, only a thin adaptation layer
has to be developed between the RMS and the software.
This adaptation layer is calledsoftware testbed, and it is
relatively simple to implement. The testbed is migrated
to the remote systems together with the software, where it
serves as an interface through which the RMS Core con-
trols the software.

3.1 Agent Cooperation in RMS

In multi-agent systems, various organizational models
may be used. In RMS, a hybrid between a master/slave
and the agent teams models is used [8]. The RMS Con-
sole agent can be viewed as a master agent, because it
intelligently decomposes a complex problem into a set of
elementary tasks and distributes them to multi-operation
agents. Agents communicate in order to execute all op-
erations requested from them, and communication be-
tween agents follows the Foundation for Intelligent Phys-
ical Agents (FIPA) standards for inter-agent communica-
tion (http://www.fipa.org). In FIPA-compliant agent sys-
tems, agents communicate by sending messages. The
message structure is written using Agent Communica-
tion Language (ACL). Message content is expressed in
a content language, such as Knowledge Interchange For-
mat (KIF) or Semantic Language (SL). The content ex-
pressions can be based on an ontology which defines the
meaning of each message. In order to send an ACL mes-
sage, it has to be encoded using the message represen-
tation appropriate for the transport e.g. XML, string or
bit efficient representation. The transport message itself
consists of an encoded ACL message plus theenvelope.
The envelope contains the sender and receiver transport
descriptions which contain information on how to send
the message. The envelope can also contain some addi-
tional information, such as the encoding representation,
data related security, and other application-specific data

.

.

.

Agent

Agent

RS1

(Grid node)

RMS
ME

Management
Station

RMS
Console

Network

RMS
ME

RS2

(Grid node)

Figure 4. The concept of RMS



Monitoring Data Visualization and Agent-based Software Management for the Grid 5

that must be visible for the transport or recipient(s). The
transport message can be sent over the network by various
protocols.

3.2 Grid software management by using RMS

A case study presented here shows how RMS may be used
to perform basic software operations in Grid environment,
by installing and running the MonALISA software, a dis-
tributed monitoring software used in the real Grid envi-
ronment. In order to install software on a given system, it
is typically necessary to download the current release of
software from the Web, unpack the archive file, and con-
figure certain parameters on the target system. The goal
of the demonstration is to install and run Grid software on
three different remote systems.

First, in addition to the testbed,installation archives
for both versions are created. The idea is that each soft-
ware version must be packaged in an installation archive,
which contains a special installation script. The installa-
tion archive will simply be referred to as “version”. The
installation script describes the configuration details that
have to be changed when installing the software. When
RMS agent executes the installation, it extracts the script
from the archive, loads it with local specific parameters
and initiates its execution. After that, the installation
script takes over and does all the work. The parameters
passed to the script include, for example, the local host
name, the exact path that software will be installed to,
etc. The format chosen for installation scripts is Apache
Ant (http://ant.apache.org). Writing the installation script
is typically the responsibility of the software testbed de-
veloper(s). Since the installation script describes the para-
meters to be configured when installing the software, its
content can be easily extracted from the software docu-
mentation, which specifies those details for human users.
In addition to specifying configuration details, Ant scripts
can perfroming additional operations, such as download-
ing the software from a server in case that the software
package to be migrated is too large to be efficiently trans-
ported by the agent itself. In this case, the agents trans-
fer only the Ant script, and during installation, the script
downloads the actual software from a HTTP server to the
remote system. Both of these approaches are depicted in
Fig. 5.

At the beginning of the scenario, RMS ME is started
on all three remote systems (RS1, RS2, RS3), none of
which initially contains the MonALISA software. The
RMS user starts the RMS Console and performs registra-
tion at all three remote systems. In the first part of the sce-
nario, the RMS user wants to install the MonAlisa soft-
ware on all three remote systems. To achieve that, one
has to pick out a Java Archive (JAR) file containing the
testbed and a JAR file representing the installation archive
for that version, and set the software to be started on one

(a) software carried by the agent

(b) software downloaded from the server

Figure 5. Alternative software migration scenarios

of the remote systems. After that, the configuration may
easily be copied to other systems. Once the user initi-
ates the task execution, four agents are created; namely,
Agent1, Agent2, Agent3, and, Agent4. Agent1 migrates
the software to all three remote systems (RS1, RS2, RS3),
by performing the following operations on each of them:
testbed migration, version migration. Agent2 migrates
to RS1, and - after having received the notification from
Agent1 that the software has been migrated to that loca-
tion - executes the following operations: testbed instal-
lation, version installation, setting execution parameters,
starting the software. Agent3 migrates to RS2 and per-
forms the same tasks there, while Agent4 does the same
at RS3. Version installation includes unpacking of the in-
stallation archive and executing the Ant script provided in
the archive. After the execution has been completed, the
MonALISA software may be observed as up and running
on all three remote systems.

4 Conclusions

In this paper, we describe our results in the area of vi-
sualization of monitoring data and remote software man-
agement for the Grid. We have presented MUVA and its
application to visualization of Grid monitoring data on
multiple platforms. The key features of the proposed ap-
proach are independence of data acquisition and the thin
adaptation “layer” for the platform on which the data are
visualized. The presented case study demonstrates the
visualization of Grid monitoring data on multiple plat-
forms. We have also presented the RMS system and its
application to Grid software management. The case study
demonstrates the installation of MonALISA monitoring
software on three Grid nodes. Ongoing work on RMS in-
cludes introducing additional advanced software manage-



ment features, such as centralized trace collection from
multiple systems. We also plan to enable intelligent soft-
ware management by using semantic agents.

Acknowledgement

This work has been supported by Ericsson Nikola Tesla
R&D Centre under research projects “Networked Virtual
Reality support in IMS” and “Remote Operation Manage-
ment and Multiagent System”, and the Ministry of Sci-
ence, Education and Sports of the Republic of Croatia,
under project 0036030 “Mobility of Users and Services
in New Generation Networks”.

5 References

[1] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G.
Tortone, C. Vistoli, GridICE: a monitoring service for the
Grid, Proceedings of the Third Cracow Grid Workshop,
Cracow, Poland, 2003, pp. 220-226.

[2] Z. Balaton, P. Kacsuk, N. Podhorszki, F. Vajda,
Comparison of Representative Grid Monitoring
Tools, Computer and Automation Research In-
stitute of the Hungarian Academy of Sciences,
Tech. Report LPDS-2/2000, 2000. [Available:
http://www.lpds.sztaki.hu/publications/reports/lpds-
2- 2000.pdf]

[3] F. Bergenti, M-P. Gleizes, F. Zambonelli,Methodolo-
gies and Software Engineering for Agent Systems, Kluwer
Academic Publishers, 2004.

[4] M. Butler, F. Giannetti, R. Gimson, T. Wiley, Device In-
dependence and the Web,IEEE Internet Computing, vol.
6, no. 5, 2002, pp. 81-86.

[5] W. R. Cockayne, M. Zyda,Mobile Agents, Prentice Hall,
1997.

[6] I. Foster, C. Kesselman,The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers,
1988.

[7] I. Foster, C. Keselman, J. Nick, S. Tuecke, Grid Services
for Distributed System Integration,IEEE Computer, vol.
35, no. 6, 2002, pp. 37-46.

[8] G. Ježić, M. Kušek, S. Dešić, A. Carić, D. Huljeni´c,
Multi-Agent System for Remote Software Operation,Lec-
ture Notes in Artificial Intelligence, LNAI 2774, Springer-
Verlag, 2003, pp. 675-682.

[9] G. Ježić, M. Kušek, T. Marenić, I. Ljubi, I. Lovrek, S.
Dešić, B. Dellas, Grid Service Management by Using Re-
mote Maintenance Shell,Lecture Notes in Computer Sci-
ence, LNCS 3270, 2004, pp. 136-150.

[10] G. Ježić, M. Kušek, I. Ljubi, T. Marenić, I. Lovrek,S.
Dešić, B. Dellas, Mobile-Agent Based Software Manage-
ment in Grid,Proc. of the Workshop on Emerging Tech-
nologies for Next Generation GRID, Modena, Italy, 2004,
pp. 345-346.

[11] M. Kušek, G. Ježić, I. Ljubi, K. Mlinaric, I. Lovrek,S.
Dešić, O. Labor, A. Carić, D. Huljenić, Mobile Agent
Based Software Operation and Maintenance,Proceedings
of the 7th International Conference on Telecommunica-
tions ConTEL 2003, Zagreb, 2003, pp. 601-608.

[12] G. Ježić, M. Kušek, I. Lovrek, S. Dešić, B. Dellas,Agent-
based Framework for Distributed Service Management,
Proceedings of the 16th IASTED International Confer-
ence on Parallel and Distributed Computing and Systems,
Boston, MA, USA, 2004, pp. 583-588.

[13] M. Mambelli, R. Gardner. Integration of Monitoring Sys-
tems for Grid Environments,Proceedings of the 13th
IEEE International Workshop on Enabling Technologies
(WET-ICE): Infrastructure for Collaborative Enterprises,
Modena, Italy, 2004, pp. 266-267.

[14] T. Marenić, G. Ježić, M. Kušek, I. Lovrek, Using Remote
Maintenance Shell for Service Provisioning in the Distrib-
uted Systems,Proc. of the International Telecomunica-
tions Symposium VITEL 2004, Maribor, Slovenia, 2004.

[15] D. Mikić, L. Skorin-Kapov, O. Dobrijević, P. Schilhard,
3D Visualization of the Geographical & Organizational
Structure of the Grid,Proceedings of the 12th IEEE
Mediterranean Electrotechnical Conference MELECON
2004, Vol. II, Dubrovnik, Croatia, 2004, pp. 689-692.

[16] M. Mošmondor, H. Komerički, I. Pandžić, 3D Visualiza-
tion of Data on Mobile Devices,Proceedings of the 12th
IEEE Mediterranean Electrotechnical Conference MELE-
CON 2004, Vol. II, Dubrovnik, Croatia, 2004, pp. 645-
648.

[17] J. Nabrzysku, J. M. Schopf, and J. Weglarz,Grid Resource
Management - State of the Art and Future Trends, Kluwer
Academic Publishers, 2004.

[18] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, C.
Cirstoiu, MonALISA: A Distributed Monitoring Service
Architecture, Proceedings of the 2003 Conference for
Computing in High Energy Nuclear Physics, La Jolla,
California, USA, 2003, MOET001, 8 pp.

[19] G. G. Robertson, J. D. Mackinlay, S. K. Card. Cone trees:
Animated 3D visualization of hierarchical information,
Proceedings of the SIGCHI Conference on Human fac-
tors in computing systems: Reaching through technology,
ACM Press, New York, USA, 1991, pp. 189-194.

[20] L. Skorin-Kapov, D. Mikić, H. Komerički, M.
Matijašević, I. Pandžić, Multiplatform Universal Vi-
sualization Architecture,Proceedings of the Second
International Conference on Advances in Mobile
Multimedia 2004, Bali, Indonesia, 2004, pp. 15-24.

Maja Matija ševíc received her Dipl.-Ing. (1990), M.Sc.
(1994), and Ph.D. (1998) degrees in Electrical Engineeringfrom
the University of Zagreb, Croatia, and the M.Sc. in Com-
puter Engineering (1997) from the University of Louisiana at
Lafayette, LA, USA. She is presently an Assistant Professorin
the Faculty of Electrical Engineering and Computing, Univer-
sity of Zagreb, Croatia. Her main research interests include net-
worked virtual environments and advanced multimedia services
for next generation networks. Dr. Matijašević is a memberof
IEEE, ACM, and Upsilon Pi Epsilon Honor Society in the Com-
puting Sciences.

Gordan Ježíc received his Dipl. Ing., M.Sc. and Ph.D. de-
grees in Electrical Engineering at the Faculty of Electrical Engi-
neering and Computing, University of Zagreb, Croatia, in 1995,
1999 and 2003, respectively. He currently works as an Assis-
tant Professor at the Department of Telecommunications of the
Faculty of Electrical Engineering and Computing, University of
Zagreb. His research interests include mobile process modeling,
formal methods, distributed computing, agent-oriented software
engineering, mobile software agents, and multi-agent systems.
Dr. Ježić is a member of IEEE.


